根据距离汇总科幻点

时间:2019-03-11 21:09:31

标签: r sf

当点在指定距离内时,我想为SpatialPointsDataFrame的所有变量创建平均值。我有一种方法可以做到这一点,但这似乎是解决问题的一种愚蠢的方法。任何使用整齐的现代语法进行此操作的想法都将受到赞赏。

首先,我有一个SpatialPointsDataFrame,其中每个点都测量了几个变量。我想获取指定距离内点的所有变量的平均值。例如,从meuse数据中获取彼此之间100 m以内的点的平均镉值:

library(sf)
library(sp)
data(meuse)
pts <- st_as_sf(meuse, coords = c("x", "y"),remove=FALSE)
pts100 <- st_is_within_distance(pts, dist = 100)
# can use sapply to get mean of a variable. E.g., cadmium
sapply(pts100, function(x){ mean(pts$cadmium[x]) })

因此,我已经弄清楚了如何使用sapply来逐个变量地执行此变量。因此,我可以根据需要计算每个变量的平均值,为每个点生成一个质心,然后生成唯一值的SpatialPointsDataFrame。例如,对于前几个变量:

res <- data.frame(id=1:length(pts100),
                  x=NA, y=NA,
                  cadmium=NA, copper=NA, lead=NA)
res$x <- sapply(pts100, function(p){ mean(pts$x[p]) })
res$y <- sapply(pts100, function(p){ mean(pts$y[p]) })
res$cadmium <- sapply(pts100, function(p){ mean(pts$cadmium[p]) })
res$copper <- sapply(pts100, function(p){ mean(pts$copper[p]) })
res$lead <- sapply(pts100, function(p){ mean(pts$lead[p]) })
res2 <- res[duplicated(res$cadmium),]
coordinates(res2) <- c("x","y")
bubble(res2,"cadmium")

这可行,但看起来很麻烦,并且好像必须有一种更有效的方法。

1 个答案:

答案 0 :(得分:1)

sf包似乎有一个聚合函数,该函数具有一个连接参数,您可以在其中指定连接类型。

ibrary(sf)
library(sp)
data(meuse)
pts <- st_as_sf(meuse, coords = c("x", "y"),remove=FALSE)

# This will give lots of warnings since there are non-numeric columns
pts_agg <- aggregate(pts,
                     pts,
                     FUN = mean, 
                     join = function(x, y) st_is_within_distance(x, y, dist = 100))

head(pts_agg)

Simple feature collection with 6 features and 14 fields
geometry type:  POINT
dimension:      XY
bbox:           xmin: 181025 ymin: 333260 xmax: 181390 ymax: 333611
CRS:            NA
         x        y cadmium copper lead   zinc  elev        dist   om ffreq soil lime landuse dist.m
1 181048.5 333584.5   10.15     83  288 1081.5 7.446 0.006791165 13.8    NA   NA   NA      NA     40
2 181048.5 333584.5   10.15     83  288 1081.5 7.446 0.006791165 13.8    NA   NA   NA      NA     40
3 181165.0 333537.0    6.50     68  199  640.0 7.800 0.103029000 13.0    NA   NA   NA      NA    150
4 181298.0 333484.0    2.60     81  116  257.0 7.655 0.190094000  8.0    NA   NA   NA      NA    270
5 181307.0 333330.0    2.80     48  117  269.0 7.480 0.277090000  8.7    NA   NA   NA      NA    380
6 181390.0 333260.0    3.00     61  137  281.0 7.791 0.364067000  7.8    NA   NA   NA      NA    470
               geometry
1 POINT (181072 333611)
2 POINT (181025 333558)
3 POINT (181165 333537)
4 POINT (181298 333484)
5 POINT (181307 333330)
6 POINT (181390 333260)

对pts第9行进行检查,因为它在pts100中有一些匹配项:

> pts[pts100[[9]], 'cadmium'] %>% st_drop_geometry %>% summarise(mean = mean(cadmium))
  mean
1 2.25


> pts_agg[9,'cadmium']
Simple feature collection with 1 feature and 1 field
geometry type:  POINT
dimension:      XY
bbox:           xmin: 181060 ymin: 333231 xmax: 181060 ymax: 333231
CRS:            NA
  cadmium              geometry
9    2.25 POINT (181060 333231)