Java中的TensorFlow服务-在一个会话中运行多个预测

时间:2019-03-11 21:07:45

标签: java tensorflow deep-learning prediction tensorflow-serving

我有一个保存的模型,我设法加载,运行并获得1行9个要素的预测。 (输入) 现在我正在尝试预测像这样的100行, 但是当尝试从Tensor.copyTo()读取结果到结果数组时,我得到了不兼容的形状

java.lang.IllegalArgumentException: cannot copy Tensor with shape [1, 1] into object with shape [100, 1]

很明显,我设法在循环中运行了这一预测-但这比等效的python在一次运行中执行100慢了20倍。

这是/saved_model_cli.py

报告的已保存模型信息
MetaGraphDef with tag-set: 'serve' contains the following SignatureDefs:

signature_def['serving_default']:
  The given SavedModel SignatureDef contains the following input(s):
    inputs['input'] tensor_info:
        dtype: DT_FLOAT
        shape: (-1, 9)
        name: dense_1_input:0
  The given SavedModel SignatureDef contains the following output(s):
    outputs['output'] tensor_info:
        dtype: DT_FLOAT
        shape: (-1, 1)
        name: dense_4/BiasAdd:0
  Method name is: tensorflow/serving/predict

问题是-我需要像问题here一样对每行进行run()

1 个答案:

答案 0 :(得分:2)

好的,所以我发现我无法为所有想要的行(预测)运行一次问题。可能是我混淆了输入和输出矩阵的tensorflow新手问题。 当报表工具(python)说您有输入Tensor时 形状(-1,9)映射到java long [] {1,9}并不意味着您不能传递与long [] {1000,9}一样的输入-这意味着可以进行1000行预测。 输入后,定义为[1,1]的输出张量可以为[1000,1]。

此代码实际上比python运行速度快(1.2秒对7秒) 这是代码(也许会更好地解释)

public Tensor prepareData(){
    Random r = new Random();
    float[]inputArr = new float[NUMBER_OF_KEWORDS*NUMBER_OF_FIELDS];
    for (int i=0;i<NUMBER_OF_KEWORDS * NUMBER_OF_FIELDS;i++){
        inputArr[i] = r.nextFloat();
    }

    FloatBuffer inputBuff = FloatBuffer.wrap(inputArr, 0, NUMBER_OF_KEWORDS*NUMBER_OF_FIELDS);
    return Tensor.create(new long[]{NUMBER_OF_KEWORDS,NUMBER_OF_FIELDS}, inputBuff);
}

public void predict (Tensor inputTensor){
    try ( Session s = savedModelBundle.session()) {
        Tensor result;
        long globalStart = System.nanoTime();
            result = s.runner().feed("dense_1_input", inputTensor).fetch("dense_4/BiasAdd").run().get(0);

            final long[] rshape = result.shape();
            if (result.numDimensions() != 2 || rshape[0] <= NUMBER_OF_KEWORDS) {
                throw new RuntimeException(
                        String.format(
                                "Expected model to produce a [N,1] shaped tensor where N is the number of labels, instead it produced one with shape %s",
                                Arrays.toString(rshape)));
            }


        float[][] resultArray = (float[][]) result.copyTo(new float[NUMBER_OF_KEWORDS][1]);
        System.out.println(String.format("Total of %d,  took : %.4f ms", NUMBER_OF_KEWORDS, ((double) System.nanoTime() - globalStart) / 1000000));
        for (int i=0;i<10;i++){
            System.out.println(resultArray[i][0]);
        }
    }
}