我正在开发一个Android应用程序,并且正在使用Opencv实时处理框架。
图像处理很重,因为我正在检测最大的轮廓,对其进行旋转和裁剪,然后对裁剪后的Mat
对象进行某种分割。
问题是 FPS 的起始值为3,然后下降为1。
我没有执行诸如matToBitmap
之类的繁重操作,并且还没有进行本地调用。
这是我的第一个大型项目,我在Opencv方面经验不足。我该怎么做才能增加我的FPS?
这是我的代码:
long e1 = Core.getTickCount();
Mat mGray = new Mat();
MatOfDouble mu = new MatOfDouble();
MatOfDouble stddev = new MatOfDouble();
Imgproc.cvtColor(origMat, origMat, Imgproc.COLOR_BGRA2BGR);
Imgproc.cvtColor(origMat, mGray, Imgproc.COLOR_BGR2GRAY);
Core.meanStdDev(mGray, mu, stddev);
Imgproc.GaussianBlur(mGray, mGray, new Size(5, 5), 5);
Imgproc.Canny(mGray, mGray, (mu.get(0, 0)[0]) * 0.66, (mu.get(0, 0)[0]) * 1.33, 3, false);
Mat kernell = Imgproc.getStructuringElement(Imgproc.MORPH_RECT, new Size(9, 9));
Imgproc.morphologyEx(mGray, mGray, Imgproc.MORPH_CLOSE, kernell);
Imgproc.dilate(mGray, mGray, Imgproc.getStructuringElement(Imgproc.MORPH_CROSS, new Size(3, 3)));
List<MatOfPoint> contours = new ArrayList<MatOfPoint>();
Mat hierarchy = new Mat();
Imgproc.findContours(mGray, contours, hierarchy, Imgproc.RETR_EXTERNAL, Imgproc.CHAIN_APPROX_SIMPLE);
double largest_area = 0;
Rect rect = new Rect();
int largest_idx = 0;
for (int idx = 0; idx < contours.size(); idx++) {
double a = Imgproc.contourArea(contours.get(idx)); //Find the area of contour
if (a > largest_area) {
largest_area = a;
largest_idx = idx;
}
}
if (contours.size() > 0) {
MatOfPoint2f new_mat = new MatOfPoint2f(contours.get(largest_idx).toArray());
RotatedRect rbox = Imgproc.minAreaRect(new_mat);
Point vertices[] = new Point[4];
rbox.points(vertices);
List<MatOfPoint> boxContours = new ArrayList<>();
boxContours.add(new MatOfPoint(vertices));
for (int i = 0; i < 4; ++i) {
Imgproc.line(origMat, vertices[i], vertices[(i + 1) % 4], new Scalar(255, 0, 0));
}
double rect_angle = rbox.angle - 90.0f;
Size rect_size = rbox.size;
double d = rect_size.width;
rect_size.width = rect_size.height;
rect_size.height = d;
M = Imgproc.getRotationMatrix2D(rbox.center, rect_angle, 1.0);
Imgproc.warpAffine(origMat, rotated, M, origMat.size());
if (rect_size.width > 70 && rect_size.height > 70)
Imgproc.getRectSubPix(rotated, new Size(rect_size.width - 70, rect_size.height - 70), rbox.center, rotated);
Imgproc.resize(rotated, rotated, origMat.size());
Mat orr = rotated.clone();
Imgproc.cvtColor(orr, orr, Imgproc.COLOR_RGB2HSV);
Core.split(orr, channels);
orr = channels.get(2);
CLAHE clahe = Imgproc.createCLAHE();
clahe.setClipLimit(1);
clahe.apply(orr, orr);
Imgproc.GaussianBlur(orr, orr, new Size(5, 5), 5);
Core.meanStdDev(mGray, mu, stddev);
Imgproc.Canny(orr, orr, (mu.get(0, 0)[0]) * 0.66, (mu.get(0, 0)[0]) * 1.33, 3, false);
Imgproc.morphologyEx(orr, orr, Imgproc.MORPH_CLOSE, kernell);
Imgproc.dilate(orr, orr, Imgproc.getStructuringElement(Imgproc.MORPH_CROSS, new Size(3, 3)));
Imgproc.findContours(orr, contours, new Mat(), Imgproc.RETR_EXTERNAL, Imgproc.CHAIN_APPROX_SIMPLE);
for (int i = contours.size() - 1; i >= 0; i--) {
double area = Imgproc.contourArea(contours.get(i), false); // Find the area of contour
if (area < min_area)
contours.remove(i);
}
if (contours.size() > 0) {
MatOfPoint2f approxCurve = new MatOfPoint2f();
rectList.clear();
for (int idx = 0; idx < contours.size(); idx++) {
//Convert contours(i) from MatOfPoint to MatOfPoint2f
MatOfPoint2f contour2f = new MatOfPoint2f(contours.get(idx).toArray());
//Processing on mMOP2f1 which is in type MatOfPoint2f
double approxDistance = Imgproc.arcLength(contour2f, true) * 0.02;
Imgproc.approxPolyDP(contour2f, approxCurve, approxDistance, true);
//Convert back to MatOfPoint
MatOfPoint points = new MatOfPoint(approxCurve.toArray());
// Get bounding rect of contour
Rect rectt = Imgproc.boundingRect(points);
rectList.add(rect);
Mat miniature = new Mat(orr, new Rect(rectt.tl(), rectt.br()));
mats.add(miniature);
// draw enclosing rectangle (all same color, but you could use variable i to make them unique)
Imgproc.rectangle(rotated, rectt.tl(), rectt.br(), new Scalar(255, 0, 0));
}
}
long e2 = Core.getTickCount();
long e = e2 - e1;
double time = e / Core.getTickFrequency();
Log.d("timeTAG", "" + time);
return orr;
}
return rotated;