我在OpenCV中保存了经过训练的MLP神经网络。 YAML文件如下:
%YAML:1.0
---
opencv_ml_ann_mlp:
format: 3
layer_sizes: [ 2, 2, 1 ]
activation_function: SIGMOID_SYM
f_param1: 6.6666666666666663e-01
f_param2: 1.7159000000000000e+00
min_val: -9.4999999999999996e-01
max_val: 9.4999999999999996e-01
min_val1: -9.7999999999999998e-01
max_val1: 9.7999999999999998e-01
training_params:
train_method: RPROP
dw0: 1.0000000000000001e-01
dw_plus: 1.2000000000000000e+00
dw_minus: 5.0000000000000000e-01
dw_min: 1.1920928955078125e-07
dw_max: 50.
term_criteria:
epsilon: 1.0000000000000000e-04
iterations: 1000
input_scale:
- 2.
- -1.
- 2.
- -1.
output_scale:
- 5.2631578947368418e-01
- 4.9999999999999994e-01
inv_output_scale:
- 1.8999999999999999e+00
- -9.4999999999999996e-01
weights:
-
- -4.7194814611664775e+00
- -6.1634082465651581e+00
- -4.3155547465702089e+00
- -5.1915700181726363e+00
- 3.8901623511805283e+00
- -5.2437247580543920e+00
-
- 1.2414966548773920e+00
- -1.2394795554405691e+00
- -1.9857133283213504e+00
我到处都找不到这些标签的解释。 input_scale
,output_scale
和inv_output_scale
的含义是什么?定义它们的算法是什么?