当我运行python脚本时,它显示空白屏幕并迅速消失

时间:2019-03-10 06:45:43

标签: python

当我运行.py文件时,它迅速显示一个黑屏,然后消失并且不执行任何操作。该脚本在编辑器中可以正常运行!完整的代码在下面,我知道它可以使用一些改进,但是我现在只是在寻找空白屏幕的答案。 :)(脚本是一种简单的遗传算法)

#!/usr/bin/python3
from fuzzywuzzy import fuzz
import random
import string

def error_msg():
    print('\nSomethine went wrong!\nMake sure you typed the information correctly!')
    mainF()

def mainF():
    try:
        while 7 == 7:
            print()
            stri = input('Enter string here: ')
            gene = input('Enter number of generations here: ')
            agen = input('Enter number of agents here: ')
            muta = input('Enter chance of mutation here (0 - 1): ')
            thre = input('Enter threshold here: ')
            if stri == '' or gene == '' or agen == '' or thre == '' or muta == '' or stri.isdigit() or gene.isalpha() or agen.isalpha() or thre.isalpha() or muta.isalpha():
                print('\nSomethine went wrong!\nMake sure you typed the information correctly!')
            else:
                ga(stri, len(stri), agen, gene, thre, muta)
    except:
        error_msg()

class Agent:
    def __init__(self, length):
        self.string = ''.join(random.choice(string.ascii_letters) for _ in range(length))
        self.fitness = -1
    def __str__(self):
        return 'String: ' + str(self.string) + ', Fitness: ' + str(self.fitness) + '.'

def init_agents(population_p, length):
    try:
        population = int(population_p)
        return [Agent(length) for _ in range(population)]
    except:
        error_msg()

def fitness(agents, in_str_p):
    try:
        in_str = in_str_p
        for agent in agents:
            agent.fitness = fuzz.ratio(agent.string, in_str)
        return agents
    except:
        error_msg()

def selection(agents):
    try:
        agents = sorted(agents, key=lambda agent: agent.fitness, reverse=True)
        print('\n'.join(map(str, agents)))
        agents = agents[:int(0.2 * len(agents))]
        return agents
    except:
        error_msg()

def crossover(agents, in_str_len_p, population_p):
    try:
        population = int(population_p)
        in_str_len = in_str_len_p
        offspring = []
        for _ in range((population - len(agents)) // 2):
            parent1 = random.choice(agents)
            parent2 = random.choice(agents)
            child1 = Agent(in_str_len)
            child2 = Agent(in_str_len)
            split = random.randint(0, in_str_len)
            child1.string = parent1.string[0:split] + parent2.string[split:in_str_len]
            child2.string = parent2.string[0:split] + parent1.string[split:in_str_len]
            offspring.append(child1)
            offspring.append(child2)
        agents.extend(offspring)
        return agents
    except:
        error_msg()

def mutation(agents, in_str_len_p, mutation_chance_p):
    try:
        mutation_chance = float(mutation_chance_p)
        in_str_len = in_str_len_p
        for agent in agents:
            for idx, param in enumerate(agent.string):
                if random.uniform(0.0, 1.0) <= mutation_chance:
                    agent.string = agent.string[0:idx] + random.choice(string.ascii_letters) + agent.string[idx+1:in_str_len]
        return agents
    except:
        error_msg()

def ga(in_str_p, in_str_len_p, population_p, generations_p, threshold_p, mutation_chance_p):
    mutation_chance = mutation_chance_p
    threshold = int(threshold_p)
    population = population_p
    generations = int(generations_p)
    in_str = in_str_p
    in_str_len = in_str_len_p
    agents = init_agents(population, in_str_len)
    for generation in range(generations):
        print('Generation: ' + str(generation))
        agents = fitness(agents, in_str)
        agents = selection(agents)
        agents = crossover(agents, in_str_len, population)
        agents = mutation(agents, in_str_len, mutation_chance)
        if any(agent.fitness >= threshold for agent in agents):
            print('Threshold met!')
            mainF()

if __name__ == '__main__':
    mainF()

0 个答案:

没有答案