当我运行.py文件时,它迅速显示一个黑屏,然后消失并且不执行任何操作。该脚本在编辑器中可以正常运行!完整的代码在下面,我知道它可以使用一些改进,但是我现在只是在寻找空白屏幕的答案。 :)(脚本是一种简单的遗传算法)
#!/usr/bin/python3
from fuzzywuzzy import fuzz
import random
import string
def error_msg():
print('\nSomethine went wrong!\nMake sure you typed the information correctly!')
mainF()
def mainF():
try:
while 7 == 7:
print()
stri = input('Enter string here: ')
gene = input('Enter number of generations here: ')
agen = input('Enter number of agents here: ')
muta = input('Enter chance of mutation here (0 - 1): ')
thre = input('Enter threshold here: ')
if stri == '' or gene == '' or agen == '' or thre == '' or muta == '' or stri.isdigit() or gene.isalpha() or agen.isalpha() or thre.isalpha() or muta.isalpha():
print('\nSomethine went wrong!\nMake sure you typed the information correctly!')
else:
ga(stri, len(stri), agen, gene, thre, muta)
except:
error_msg()
class Agent:
def __init__(self, length):
self.string = ''.join(random.choice(string.ascii_letters) for _ in range(length))
self.fitness = -1
def __str__(self):
return 'String: ' + str(self.string) + ', Fitness: ' + str(self.fitness) + '.'
def init_agents(population_p, length):
try:
population = int(population_p)
return [Agent(length) for _ in range(population)]
except:
error_msg()
def fitness(agents, in_str_p):
try:
in_str = in_str_p
for agent in agents:
agent.fitness = fuzz.ratio(agent.string, in_str)
return agents
except:
error_msg()
def selection(agents):
try:
agents = sorted(agents, key=lambda agent: agent.fitness, reverse=True)
print('\n'.join(map(str, agents)))
agents = agents[:int(0.2 * len(agents))]
return agents
except:
error_msg()
def crossover(agents, in_str_len_p, population_p):
try:
population = int(population_p)
in_str_len = in_str_len_p
offspring = []
for _ in range((population - len(agents)) // 2):
parent1 = random.choice(agents)
parent2 = random.choice(agents)
child1 = Agent(in_str_len)
child2 = Agent(in_str_len)
split = random.randint(0, in_str_len)
child1.string = parent1.string[0:split] + parent2.string[split:in_str_len]
child2.string = parent2.string[0:split] + parent1.string[split:in_str_len]
offspring.append(child1)
offspring.append(child2)
agents.extend(offspring)
return agents
except:
error_msg()
def mutation(agents, in_str_len_p, mutation_chance_p):
try:
mutation_chance = float(mutation_chance_p)
in_str_len = in_str_len_p
for agent in agents:
for idx, param in enumerate(agent.string):
if random.uniform(0.0, 1.0) <= mutation_chance:
agent.string = agent.string[0:idx] + random.choice(string.ascii_letters) + agent.string[idx+1:in_str_len]
return agents
except:
error_msg()
def ga(in_str_p, in_str_len_p, population_p, generations_p, threshold_p, mutation_chance_p):
mutation_chance = mutation_chance_p
threshold = int(threshold_p)
population = population_p
generations = int(generations_p)
in_str = in_str_p
in_str_len = in_str_len_p
agents = init_agents(population, in_str_len)
for generation in range(generations):
print('Generation: ' + str(generation))
agents = fitness(agents, in_str)
agents = selection(agents)
agents = crossover(agents, in_str_len, population)
agents = mutation(agents, in_str_len, mutation_chance)
if any(agent.fitness >= threshold for agent in agents):
print('Threshold met!')
mainF()
if __name__ == '__main__':
mainF()