从最后一个隐藏层提取特征Pytorch Resnet18

时间:2019-03-10 01:29:06

标签: python conv-neural-network pytorch

我正在将the Oxford Pet dataset与经过预训练的Resnet18 CNN一起实现图像分类器。 数据集包含37个类别,每个类别中都有约200张图像。

我不想使用CNN的最终softmax层作为输出进行预测,而是希望使用CNN作为特征提取器对宠物进行分类。

对于每个图像,我想从最后一个隐藏层(应该在 1000维输出层之前)获取要素。我的模型正在使用Relu激活,所以我应该在ReLU之后抓取输出(因此所有值都是非负的)

以下是代码(在Pytorch上的transfer learning教程之后):

加载数据

normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                std=[0.229, 0.224, 0.225])


image_datasets = {"train": datasets.ImageFolder('images_new/train', transforms.Compose([
        transforms.RandomResizedCrop(224),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        normalize
    ])), "test": datasets.ImageFolder('images_new/test', transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        normalize
    ]))
               }

dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,
                                             shuffle=True, num_workers=4, pin_memory=True)
              for x in ['train', 'test']}

dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'test']}

train_class_names = image_datasets['train'].classes

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

火车功能

def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
    since = time.time()

    best_model_wts = copy.deepcopy(model.state_dict())
    best_acc = 0.0

    for epoch in range(num_epochs):
        print('Epoch {}/{}'.format(epoch, num_epochs - 1))
        print('-' * 10)

        # Each epoch has a training and validation phase
        for phase in ['train', 'test']:
            if phase == 'train':
                scheduler.step()
                model.train()  # Set model to training mode
            else:
                model.eval()   # Set model to evaluate mode

            running_loss = 0.0
            running_corrects = 0

            # Iterate over data.
            for inputs, labels in dataloaders[phase]:
                inputs = inputs.to(device)
                labels = labels.to(device)

                # zero the parameter gradients
                optimizer.zero_grad()

                # forward
                # track history if only in train
                with torch.set_grad_enabled(phase == 'train'):

                    outputs = model(inputs)
                    _, preds = torch.max(outputs, 1)


                    loss = criterion(outputs, labels)

                    # backward + optimize only if in training phase
                    if phase == 'train':
                        loss.backward()
                        optimizer.step()

                # statistics
                running_loss += loss.item() * inputs.size(0)
                running_corrects += torch.sum(preds == labels.data)

            epoch_loss = running_loss / dataset_sizes[phase]
            epoch_acc = running_corrects.double() / dataset_sizes[phase]

            print('{} Loss: {:.4f} Acc: {:.4f}'.format(
                phase, epoch_loss, epoch_acc))

            # deep copy the model
            if phase == 'test' and epoch_acc > best_acc:
                best_acc = epoch_acc
                best_model_wts = copy.deepcopy(model.state_dict())

        print()

    time_elapsed = time.time() - since
    print('Training complete in {:.0f}m {:.0f}s'.format(
        time_elapsed // 60, time_elapsed % 60))
    print('Best val Acc: {:4f}'.format(best_acc))

    # load best model weights
    model.load_state_dict(best_model_wts)
    return model

计算SGD交叉熵损失

model_ft = models.resnet18(pretrained=True)
num_ftrs = model_ft.fc.in_features

print("number of features: ", num_ftrs)

model_ft.fc = nn.Linear(num_ftrs, len(train_class_names))

model_ft = model_ft.to(device)
criterion = nn.CrossEntropyLoss()

# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)

# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler,
                       num_epochs=24)

现在如何从每个图像的最后一个隐藏层中获取特征向量?我知道我必须冻结上一层,以便不对它们进行梯度计算,但是在提取特征向量时遇到了麻烦。

我的最终目标是使用这些特征向量来训练线性分类器,例如Ridge或类似的东西。

谢谢!

2 个答案:

答案 0 :(得分:1)

这可能不是最好的主意,但是您可以执行以下操作:

#assuming model_ft is trained now
model_ft.fc_backup = model_ft.fc
model_ft.fc = nn.Sequential() #empty sequential layer does nothing (pass-through)
# now you use your network as a feature extractor

我还检查了fc是要更改的正确属性,请查看forward

答案 1 :(得分:1)

您可以尝试以下方法。这将适用于仅更改偏移量的任何层。

model_ft = models.resnet18(pretrained=True)
### strip the last layer
feature_extractor = torch.nn.Sequential(*list(model_ft.children())[:-1])
### check this works
x = torch.randn([1,3,224,224])
output = feature_extractor(x) # output now has the features corresponding to input x
print(output.shape)

torch.Size([1,512,1,1])