我正在将the Oxford Pet dataset与经过预训练的Resnet18 CNN一起实现图像分类器。 数据集包含37个类别,每个类别中都有约200张图像。
我不想使用CNN的最终softmax层作为输出进行预测,而是希望使用CNN作为特征提取器对宠物进行分类。
对于每个图像,我想从最后一个隐藏层(应该在 1000维输出层之前)获取要素。我的模型正在使用Relu激活,所以我应该在ReLU之后抓取输出(因此所有值都是非负的)
以下是代码(在Pytorch上的transfer learning教程之后):
加载数据
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
image_datasets = {"train": datasets.ImageFolder('images_new/train', transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize
])), "test": datasets.ImageFolder('images_new/test', transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize
]))
}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,
shuffle=True, num_workers=4, pin_memory=True)
for x in ['train', 'test']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'test']}
train_class_names = image_datasets['train'].classes
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
火车功能
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'test']:
if phase == 'train':
scheduler.step()
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
# deep copy the model
if phase == 'test' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
# load best model weights
model.load_state_dict(best_model_wts)
return model
计算SGD交叉熵损失
model_ft = models.resnet18(pretrained=True)
num_ftrs = model_ft.fc.in_features
print("number of features: ", num_ftrs)
model_ft.fc = nn.Linear(num_ftrs, len(train_class_names))
model_ft = model_ft.to(device)
criterion = nn.CrossEntropyLoss()
# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)
# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler,
num_epochs=24)
现在如何从每个图像的最后一个隐藏层中获取特征向量?我知道我必须冻结上一层,以便不对它们进行梯度计算,但是在提取特征向量时遇到了麻烦。
我的最终目标是使用这些特征向量来训练线性分类器,例如Ridge或类似的东西。
谢谢!
答案 0 :(得分:1)
这可能不是最好的主意,但是您可以执行以下操作:
#assuming model_ft is trained now
model_ft.fc_backup = model_ft.fc
model_ft.fc = nn.Sequential() #empty sequential layer does nothing (pass-through)
# now you use your network as a feature extractor
我还检查了fc
是要更改的正确属性,请查看forward
答案 1 :(得分:1)
您可以尝试以下方法。这将适用于仅更改偏移量的任何层。
model_ft = models.resnet18(pretrained=True)
### strip the last layer
feature_extractor = torch.nn.Sequential(*list(model_ft.children())[:-1])
### check this works
x = torch.randn([1,3,224,224])
output = feature_extractor(x) # output now has the features corresponding to input x
print(output.shape)
torch.Size([1,512,1,1])