numpy-无法广播输入未知错误

时间:2019-03-09 18:12:23

标签: python python-3.x numpy

我正在尝试运行以下代码,但出现以下错误:
line 71, in cross_validation folds[index] = numpy.vstack((folds[index], dataset[jindex])). ValueError: could not broadcast input array from shape (2,8) into shape (8)
有趣的是,当我打印要在vstack中使用的两个项目的形状时,它们具有相同的形状(8,)

我正在尝试确定此行功能为何失败。任何建议将不胜感激。

import numpy

def csv_to_array(file):
    # Open the file, and load it in delimiting on the ',' for a comma separated value file
    data = open(file, 'r')
    data = numpy.loadtxt(data, delimiter=',')

    # Loop through the data in the array
    for index in range(len(data)):
        # Utilize a try catch to try and convert to float, if it can't convert to float, converts to 0
        try:
            data[index] = [float(x) for x in data[index]]
        except Exception:
            data[index] = 0
        except ValueError:
            data[index] = 0

    # Return the now type-formatted data
    return data

def create_folds(dataset):
    length = len(dataset)
    folds = numpy.empty_like(dataset)
    for index in range(5):
        tempArray = numpy.ndarray(shape=(1, length))
        numpy.append(folds, tempArray)
        temp_class_array = numpy.ndarray(shape=(1,1))
        numpy.append(folds, temp_class_array)

    return folds

def class_distribution(dataset):
    dataset = numpy.asarray(dataset)
    num_total_rows = dataset.shape[0]
    num_columns = dataset.shape[1]
    classes = dataset[:,num_columns-1]
    classes = numpy.unique(classes)
    class_weights = []

    for aclass in classes:
        total = 0
        weight = 0
        for row in dataset:
            if numpy.array_equal(aclass, row[-1]):
                total = total + 1
            else:
                continue
        weight = float((total/num_total_rows))
        class_weights.append(weight)

    class_weights = numpy.asarray(class_weights)
    return classes, class_weights

def cross_validation(dataset):
    classes, class_weights = class_distribution(dataset)
    total_length = len(dataset)
    folds = create_folds(dataset)
    added_so_far = 0

    for a_class, a_class_weight in zip(classes, class_weights):
        amt_for_fold = float(((a_class_weight * total_length) / 5)-1)

        for index in range(0,10,2):
            added = 0
            for jindex in range(len(classes)):
                if added >= amt_for_fold:
                    break
                if classes[jindex] == a_class:
                    print(folds[index].shape)
                    print(dataset[jindex].shape)
                    folds[index] = numpy.vstack((folds[index], dataset[jindex]))
                    # print(folds)
                    folds[index + 1] = numpy.vstack((folds[index + 1], [classes[jindex]]))

                    if index < 8:
                        dataset = numpy.delete(dataset, jindex, 0)
                        classes = numpy.delete(classes, jindex, 0)

                    added_so_far = added_so_far + 1

    for xindex in range(len(folds)):
        folds[xindex] = numpy.delete(folds[xindex], 0, 0)

    print(folds)
    return folds

def main():
    print("BEGINNING CFV")
    ecoli = csv_to_array('Classification/ecoli.csv')
    cross_validation(ecoli)



main()

在以下数据集中:

0.61,0.45,0.48,0.5,0.48,0.35,0.41,0
0.17,0.38,0.48,0.5,0.45,0.42,0.5,0
0.44,0.35,0.48,0.5,0.55,0.55,0.61,0
0.43,0.4,0.48,0.5,0.39,0.28,0.39,0
0.42,0.35,0.48,0.5,0.58,0.15,0.27,0
0.23,0.33,0.48,0.5,0.43,0.33,0.43,0
0.37,0.52,0.48,0.5,0.42,0.42,0.36,0
0.29,0.3,0.48,0.5,0.45,0.03,0.17,0
0.22,0.36,0.48,0.5,0.35,0.39,0.47,0
0.23,0.58,0.48,0.5,0.37,0.53,0.59,0
0.47,0.47,0.48,0.5,0.22,0.16,0.26,0
0.54,0.47,0.48,0.5,0.28,0.33,0.42,0
0.51,0.37,0.48,0.5,0.35,0.36,0.45,0
0.4,0.35,0.48,0.5,0.45,0.33,0.42,0
0.44,0.34,0.48,0.5,0.3,0.33,0.43,0
0.44,0.49,0.48,0.5,0.39,0.38,0.4,0
0.43,0.32,0.48,0.5,0.33,0.45,0.52,0
0.49,0.43,0.48,0.5,0.49,0.3,0.4,0
0.47,0.28,0.48,0.5,0.56,0.2,0.25,0
0.32,0.33,0.48,0.5,0.6,0.06,0.2,0
0.34,0.35,0.48,0.5,0.51,0.49,0.56,0
0.35,0.34,0.48,0.5,0.46,0.3,0.27,0
0.38,0.3,0.48,0.5,0.43,0.29,0.39,0
0.38,0.44,0.48,0.5,0.43,0.2,0.31,0
0.41,0.51,0.48,0.5,0.58,0.2,0.31,0
0.34,0.42,0.48,0.5,0.41,0.34,0.43,0
0.51,0.49,0.48,0.5,0.53,0.14,0.26,0
0.25,0.51,0.48,0.5,0.37,0.42,0.5,0
0.29,0.28,0.48,0.5,0.5,0.42,0.5,0
0.25,0.26,0.48,0.5,0.39,0.32,0.42,0
0.24,0.41,0.48,0.5,0.49,0.23,0.34,0
0.17,0.39,0.48,0.5,0.53,0.3,0.39,0
0.04,0.31,0.48,0.5,0.41,0.29,0.39,0
0.61,0.36,0.48,0.5,0.49,0.35,0.44,0
0.34,0.51,0.48,0.5,0.44,0.37,0.46,0
0.28,0.33,0.48,0.5,0.45,0.22,0.33,0
0.4,0.46,0.48,0.5,0.42,0.35,0.44,0
0.23,0.34,0.48,0.5,0.43,0.26,0.37,0
0.37,0.44,0.48,0.5,0.42,0.39,0.47,0
0,0.38,0.48,0.5,0.42,0.48,0.55,0
0.39,0.31,0.48,0.5,0.38,0.34,0.43,0
0.3,0.44,0.48,0.5,0.49,0.22,0.33,0
0.27,0.3,0.48,0.5,0.71,0.28,0.39,0
0.17,0.52,0.48,0.5,0.49,0.37,0.46,0
0.36,0.42,0.48,0.5,0.53,0.32,0.41,0
0.3,0.37,0.48,0.5,0.43,0.18,0.3,0
0.26,0.4,0.48,0.5,0.36,0.26,0.37,0
0.4,0.41,0.48,0.5,0.55,0.22,0.33,0
0.22,0.34,0.48,0.5,0.42,0.29,0.39,0
0.44,0.35,0.48,0.5,0.44,0.52,0.59,0
0.27,0.42,0.48,0.5,0.37,0.38,0.43,0
0.16,0.43,0.48,0.5,0.54,0.27,0.37,0
0.06,0.61,0.48,0.5,0.49,0.92,0.37,1
0.44,0.52,0.48,0.5,0.43,0.47,0.54,1
0.63,0.47,0.48,0.5,0.51,0.82,0.84,1
0.23,0.48,0.48,0.5,0.59,0.88,0.89,1
0.34,0.49,0.48,0.5,0.58,0.85,0.8,1
0.43,0.4,0.48,0.5,0.58,0.75,0.78,1
0.46,0.61,0.48,0.5,0.48,0.86,0.87,1
0.27,0.35,0.48,0.5,0.51,0.77,0.79,1
0.52,0.39,0.48,0.5,0.65,0.71,0.73,1
0.29,0.47,0.48,0.5,0.71,0.65,0.69,1
0.55,0.47,0.48,0.5,0.57,0.78,0.8,1
0.12,0.67,0.48,0.5,0.74,0.58,0.63,1
0.4,0.5,0.48,0.5,0.65,0.82,0.84,1
0.73,0.36,0.48,0.5,0.53,0.91,0.92,1
0.84,0.44,0.48,0.5,0.48,0.71,0.74,1
0.48,0.45,0.48,0.5,0.6,0.78,0.8,1
0.54,0.49,0.48,0.5,0.4,0.87,0.88,1
0.48,0.41,0.48,0.5,0.51,0.9,0.88,1
0.5,0.66,0.48,0.5,0.31,0.92,0.92,1
0.72,0.46,0.48,0.5,0.51,0.66,0.7,1
0.47,0.55,0.48,0.5,0.58,0.71,0.75,1
0.33,0.56,0.48,0.5,0.33,0.78,0.8,1
0.64,0.58,0.48,0.5,0.48,0.78,0.73,1
0.11,0.5,0.48,0.5,0.58,0.72,0.68,1
0.31,0.36,0.48,0.5,0.58,0.94,0.94,1
0.68,0.51,0.48,0.5,0.71,0.75,0.78,1
0.69,0.39,0.48,0.5,0.57,0.76,0.79,1
0.52,0.54,0.48,0.5,0.62,0.76,0.79,1
0.46,0.59,0.48,0.5,0.36,0.76,0.23,1
0.36,0.45,0.48,0.5,0.38,0.79,0.17,1
0,0.51,0.48,0.5,0.35,0.67,0.44,1
0.1,0.49,0.48,0.5,0.41,0.67,0.21,1
0.3,0.51,0.48,0.5,0.42,0.61,0.34,1
0.61,0.47,0.48,0.5,0,0.8,0.32,1
0.63,0.75,0.48,0.5,0.64,0.73,0.66,1
0.71,0.52,0.48,0.5,0.64,1,0.99,1
0.72,0.42,0.48,0.5,0.65,0.77,0.79,2
0.79,0.41,0.48,0.5,0.66,0.81,0.83,2
0.83,0.48,0.48,0.5,0.65,0.76,0.79,2
0.69,0.43,0.48,0.5,0.59,0.74,0.77,2
0.79,0.36,0.48,0.5,0.46,0.82,0.7,2
0.78,0.33,0.48,0.5,0.57,0.77,0.79,2
0.75,0.37,0.48,0.5,0.64,0.7,0.74,2
0.59,0.29,0.48,0.5,0.64,0.75,0.77,2
0.67,0.37,0.48,0.5,0.54,0.64,0.68,2
0.66,0.48,0.48,0.5,0.54,0.7,0.74,2
0.64,0.46,0.48,0.5,0.48,0.73,0.76,2
0.76,0.71,0.48,0.5,0.5,0.71,0.75,2
0.84,0.49,0.48,0.5,0.55,0.78,0.74,2
0.77,0.55,0.48,0.5,0.51,0.78,0.74,2
0.81,0.44,0.48,0.5,0.42,0.67,0.68,2
0.58,0.6,0.48,0.5,0.59,0.73,0.76,2
0.63,0.42,0.48,0.5,0.48,0.77,0.8,2
0.62,0.42,0.48,0.5,0.58,0.79,0.81,2
0.86,0.39,0.48,0.5,0.59,0.89,0.9,2
0.81,0.53,0.48,0.5,0.57,0.87,0.88,2
0.87,0.49,0.48,0.5,0.61,0.76,0.79,2
0.47,0.46,0.48,0.5,0.62,0.74,0.77,2
0.76,0.41,0.48,0.5,0.5,0.59,0.62,2
0.7,0.53,0.48,0.5,0.7,0.86,0.87,2
0.64,0.45,0.48,0.5,0.67,0.61,0.66,2
0.81,0.52,0.48,0.5,0.57,0.78,0.8,2
0.73,0.26,0.48,0.5,0.57,0.75,0.78,2
0.49,0.61,1,0.5,0.56,0.71,0.74,2
0.88,0.42,0.48,0.5,0.52,0.73,0.75,2
0.84,0.54,0.48,0.5,0.75,0.92,0.7,2
0.63,0.51,0.48,0.5,0.64,0.72,0.76,2
0.86,0.55,0.48,0.5,0.63,0.81,0.83,2
0.79,0.54,0.48,0.5,0.5,0.66,0.68,2
0.57,0.38,0.48,0.5,0.06,0.49,0.33,2
0.78,0.44,0.48,0.5,0.45,0.73,0.68,2
0.78,0.68,0.48,0.5,0.83,0.4,0.29,3
0.63,0.69,0.48,0.5,0.65,0.41,0.28,3
0.67,0.88,0.48,0.5,0.73,0.5,0.25,3
0.61,0.75,0.48,0.5,0.51,0.33,0.33,3
0.67,0.84,0.48,0.5,0.74,0.54,0.37,3
0.74,0.9,0.48,0.5,0.57,0.53,0.29,3
0.73,0.84,0.48,0.5,0.86,0.58,0.29,3
0.75,0.76,0.48,0.5,0.83,0.57,0.3,3
0.77,0.57,0.48,0.5,0.88,0.53,0.2,3
0.74,0.78,0.48,0.5,0.75,0.54,0.15,3
0.68,0.76,0.48,0.5,0.84,0.45,0.27,3
0.56,0.68,0.48,0.5,0.77,0.36,0.45,3
0.65,0.51,0.48,0.5,0.66,0.54,0.33,3
0.52,0.81,0.48,0.5,0.72,0.38,0.38,3
0.64,0.57,0.48,0.5,0.7,0.33,0.26,3
0.6,0.76,1,0.5,0.77,0.59,0.52,3
0.69,0.59,0.48,0.5,0.77,0.39,0.21,3
0.63,0.49,0.48,0.5,0.79,0.45,0.28,3
0.71,0.71,0.48,0.5,0.68,0.43,0.36,3
0.68,0.63,0.48,0.5,0.73,0.4,0.3,3
0.74,0.49,0.48,0.5,0.42,0.54,0.36,4
0.7,0.61,0.48,0.5,0.56,0.52,0.43,4
0.66,0.86,0.48,0.5,0.34,0.41,0.36,4
0.73,0.78,0.48,0.5,0.58,0.51,0.31,4
0.65,0.57,0.48,0.5,0.47,0.47,0.51,4
0.72,0.86,0.48,0.5,0.17,0.55,0.21,4
0.67,0.7,0.48,0.5,0.46,0.45,0.33,4
0.67,0.81,0.48,0.5,0.54,0.49,0.23,4
0.67,0.61,0.48,0.5,0.51,0.37,0.38,4
0.63,1,0.48,0.5,0.35,0.51,0.49,4
0.57,0.59,0.48,0.5,0.39,0.47,0.33,4
0.71,0.71,0.48,0.5,0.4,0.54,0.39,4
0.66,0.74,0.48,0.5,0.31,0.38,0.43,4
0.67,0.81,0.48,0.5,0.25,0.42,0.25,4
0.64,0.72,0.48,0.5,0.49,0.42,0.19,4
0.68,0.82,0.48,0.5,0.38,0.65,0.56,4
0.32,0.39,0.48,0.5,0.53,0.28,0.38,4
0.7,0.64,0.48,0.5,0.47,0.51,0.47,4
0.63,0.57,0.48,0.5,0.49,0.7,0.2,4
0.69,0.65,0.48,0.5,0.63,0.48,0.41,4
0.43,0.59,0.48,0.5,0.52,0.49,0.56,4
0.74,0.56,0.48,0.5,0.47,0.68,0.3,4
0.71,0.57,0.48,0.5,0.48,0.35,0.32,4
0.61,0.6,0.48,0.5,0.44,0.39,0.38,4
0.59,0.61,0.48,0.5,0.42,0.42,0.37,4
0.74,0.74,0.48,0.5,0.31,0.53,0.52,4

2 个答案:

答案 0 :(得分:1)

vstack()返回形状(2,8)的数组。

然后,您将那个(2,8)数组分配给LHS folds[index],它只是一个形状(8,)数组。

numpy试图查看是否可以通过广播证明这种不匹配的分配是否合理,但要遵守广播的规则和约束,并最终放弃该错误消息。

不确定您的实际意图是什么,所以我无法建议替代方法。

我的猜测是folds实际上应该创建为3d数组,其中每个内部2d数组的行数与折叠的长度一样。

我也对此感到怀疑,第folds = numpy.empty_like(dataset)行是基于对numpy.empty_like()的一些错误理解。请仔细检查。

答案 1 :(得分:1)

我认为您可能会误解vstack的功能。给定两个具有8个项目的向量,它将垂直堆叠它们,您将获得2x8矩阵。实际上,输出将始终处于2D超前。请参阅doc和https://docs.scipy.org/doc/numpy/reference/generated/numpy.vstack.html

中的示例

例如

a = np.array([1,2,3])
b = np.array([1,2,3])
np.vstack((a,b))

输出

array([[1, 2, 3],
       [1, 2, 3]])