我正在使用xgboost的功能pred_contribs
,以便为模型的每个样本获得某种可解释性(shapley值)。
booster.predict(test, pred_contribs=True)
它返回形状(样本数)x(特征数)的贡献向量。捐款总和等于保证金得分。
但是,我想使用概率而不是保证金得分,并且为了简单起见,我想转换(近似)贡献概率。
有办法吗?
代码示例:
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
import xgboost as xgb
X, y = make_classification()
X_train, X_test, y_train, y_test = train_test_split(X, y)
dtrain = xgb.DMatrix(X_train, label=y_train)
dtest = xgb.DMatrix(X_test, label=y_test)
param = {
'max_depth': 2,
'eta': 1,
'silent': 1,
'objective': 'binary:logistic',
'eval_metric': 'auc'
}
booster = xgb.train(param, dtrain, 50)
probabilites = booster.predict(dtest)
margin_score = booster.predict(dtest, output_margin=True)
contributions = booster.predict(dtest, pred_contribs=True)