解决熊猫问题的并行编程方法

时间:2019-03-08 10:24:52

标签: python pandas numba pycuda

我有以下格式的数据框。
df

A   B  Target
5   4   3
1   3   4

我正在使用pd.DataFrame(df.corr().iloc[:-1,-1])查找各列(“目标”除外)与“目标”列的相关性。
但是问题是-我的实际数据帧的大小为(216, 72391),这在我的系统上至少需要30分钟来处理。有什么办法可以使用GPU并行化吗?我需要多次查找相似类型的值,所以不能等待每次30分钟的正常处理时间。

2 个答案:

答案 0 :(得分:1)

在这里,我尝试使用numba

实施您的操作
import numpy as np
import pandas as pd
from numba import jit, int64, float64

# 
#------------You can ignore the code starting from here---------
#
# Create a random DF with cols_size = 72391 and row_size =300
df_dict = {}
for i in range(0, 72391):
  df_dict[i] = np.random.randint(100, size=300)
target_array = np.random.randint(100, size=300)

df = pd.DataFrame(df_dict)
# ----------Ignore code till here. This is just to generate dummy data-------

# Assume df is your original DataFrame
target_array = df['target'].values

# You can choose to restore this column later
# But for now we will remove it, since we will 
# call the df.values and find correlation of each 
# column with target
df.drop(['target'], inplace=True, axis=1)

# This function takes in a numpy 2D array and a target array as input
# The numpy 2D array has the data of all the columns
# We find correlation of each column with target array
# numba's Jit required that both should have same columns
# Hence the first 2d array is transposed, i.e. it's shape is (72391,300)
# while target array's shape is (300,) 
def do_stuff(df_values, target_arr):
  # Just create a random array to store result
  # df_values.shape[0] = 72391, equal to no. of columns in df
  result = np.random.random(df_values.shape[0])

  # Iterator over each column
  for i in range(0, df_values.shape[0]):

    # Find correlation of a column with target column
    # In order to find correlation we must transpose array to make them compatible
    result[i] = np.corrcoef(np.transpose(df_values[i]), target_arr.reshape(300,))[0][1]
  return result

# Decorate the function do_stuff
do_stuff_numba = jit(nopython=True, parallel=True)(do_stuff)

# This contains all the correlation
result_array = do_stuff_numba(np.transpose(df.T.values), target_array)

链接到colab notebook

答案 1 :(得分:0)

您应该看看dask。它应该能够做您想做的事情以及更多。 它并行化了大多数DataFrame函数。