我有一个如下所示的3-d矩阵,并希望沿轴1取最大值,并将所有非最大值保持为零。
A = np.random.rand(3,3,2)
[[[0.34444547, 0.50260393],
[0.93374423, 0.39021899],
[0.94485653, 0.9264881 ]],
[[0.95446736, 0.335068 ],
[0.35971558, 0.11732342],
[0.72065402, 0.36436023]],
[[0.56911013, 0.04456443],
[0.17239996, 0.96278067],
[0.26004909, 0.06767436]]]
所需结果:
[[0 , 0 ],
[0 , 0 ],
[0.94485653, 0.9264881]],
[[0.95446736, 0 ],
[0 , 0 ],
[0 , 0.36436023]],
[[0.56911013, 0 ],
[0 , 0.96278067],
[0 , 0 ]]])
我尝试过:
B = np.zeros_like(A) #return matrix of zero with same shape as A
max_idx = np.argmax(A, axis=1) #index along axis 1 with max value
array([[2, 0],
[2, 2],
[0, 2],
[0, 1]])
C = np.max(A, axis=1, keepdims = True) #gives a (4,1,2) matrix of max value along axis 1
array([[[0.95377958, 0.92940525]],
[[0.94485653, 0.9264881 ]],
[[0.95446736, 0.36436023]],
[[0.56911013, 0.96278067]]])
但是我不知道如何将这些想法结合在一起以获得我想要的输出。请帮忙!
答案 0 :(得分:1)
您可以从max_idx
中获取最大值的3 dimensional index。 max_idx
中的值是沿着最大值的轴1的索引。由于您的其他轴分别是3和2(3 x 2 = 6),因此有六个值。您只需要了解numpy通过它们的顺序即可获得其他每个轴的索引。您首先遍历最后一个轴:
d0, d1, d2 = A.shape
a0 = [i for i in range(d0) for _ in range(d2)] # [0, 0, 1, 1, 2, 2]
a1 = max_idx.flatten() # [2, 2, 0, 2, 0, 1]
a2 = [k for _ in range(d0) for k in range(d2)] # [0, 1, 0, 1, 0, 1]
B[a0, a1, a2] = A[a0, a1, a2]
输出:
array([[[0. , 0. ],
[0. , 0. ],
[0.94485653, 0.9264881 ]],
[[0.95446736, 0. ],
[0. , 0. ],
[0. , 0.36436023]],
[[0.56911013, 0. ],
[0. , 0.96278067],
[0. , 0. ]]])