通过GrabCut中的随机采样初始化GMM

时间:2019-03-07 06:59:31

标签: opencv image-processing image-segmentation

实际上是要删除GrabCut中的初始矩形选择。为此,在用户交互的一开始,便通过从背景中随机采样一些像素(通常为1200)来初始化背景颜色模型pb(·)(GMM)。在每个后续的用户交互中,我们用从背景中随机采样的相同数量的像素替换先前交互中标记为前景的样本。使用更新后的示例重新估算了背景GMM。

为此,我删除了initMaskWithRect()函数。而且我想在GrabCut中更新以下函数以使用随机采样进行初始化

/*
  Initialize GMM background and foreground models using kmeans algorithm.
*/
static void initGMMs( const Mat& img, const Mat& mask, GMM& bgdGMM, GMM& fgdGMM )
{
    const int kMeansItCount = 10;
    const int kMeansType = KMEANS_PP_CENTERS;

    Mat bgdLabels, fgdLabels;
    std::vector<Vec3f> bgdSamples, fgdSamples;
    Point p;
    for( p.y = 0; p.y < img.rows; p.y++ )
    {
        for( p.x = 0; p.x < img.cols; p.x++ )
        {
            if( mask.at<uchar>(p) == GC_BGD || mask.at<uchar>(p) == GC_PR_BGD )
                bgdSamples.push_back( (Vec3f)img.at<Vec3b>(p) );
            else // GC_FGD | GC_PR_FGD
                fgdSamples.push_back( (Vec3f)img.at<Vec3b>(p) );
        }
    }
    CV_Assert( !bgdSamples.empty() && !fgdSamples.empty() );
    Mat _bgdSamples( (int)bgdSamples.size(), 3, CV_32FC1, &bgdSamples[0][0] );
    kmeans( _bgdSamples, GMM::componentsCount, bgdLabels,
            TermCriteria( CV_TERMCRIT_ITER, kMeansItCount, 0.0), 0, kMeansType );
    Mat _fgdSamples( (int)fgdSamples.size(), 3, CV_32FC1, &fgdSamples[0][0] );
    kmeans( _fgdSamples, GMM::componentsCount, fgdLabels,
            TermCriteria( CV_TERMCRIT_ITER, kMeansItCount, 0.0), 0, kMeansType );

    bgdGMM.initLearning();
    for( int i = 0; i < (int)bgdSamples.size(); i++ )
        bgdGMM.addSample( bgdLabels.at<int>(i,0), bgdSamples[i] );
    bgdGMM.endLearning();

    fgdGMM.initLearning();
    for( int i = 0; i < (int)fgdSamples.size(); i++ )
        fgdGMM.addSample( fgdLabels.at<int>(i,0), fgdSamples[i] );
    fgdGMM.endLearning();
}

如何做到?

0 个答案:

没有答案