WaveletComp误读数据

时间:2019-03-04 21:01:45

标签: r time-series wavelet

这是我的数据结构:

'data.frame':   275 obs. of  2 variables:
$ Date         : Date, format: "1993-07-05" "1993-08-30" "1993-09-27" "1993-10-25" ...
$ AverageOxygen: num  4.11 3.8 3.65 5.77 5.23 ...

我正在尝试让WaveletComp使用以下代码分析我的小波:

library(WaveletComp)
analyze.wavelet(WaveletSite1Oxygen, loess.span = 1/25,
            dt = 1, dj = 1/250,
            lowerPeriod = 2*dt,
            upperPeriod = floor(nrow(WaveletSite1Oxygen)/3)*dt,
            make.pval = TRUE, method = "white.noise", params = NULL,
            n.sim = 100,
            date.format = NULL, date.tz = NULL,
            verbose = TRUE)

由于某种原因,我收到了这个似乎没有道理的错误:

  

analyzer.wavelet(WaveletSite1Oxygen,loess.span = 1/25,dt = 1,的错误:     时间序列中的某些值似乎无法解释为数字。

我不确定这是怎么发生的,因为我的所有变量的格式都正确,并且没有NA。

谢谢您的帮助。

这是数据的副本

WaveletSite1Oxygen <- structure(list(Date = structure(c(8586, 8642, 8670, 8698, 8726, 
8754, 8789, 8817, 8845, 8873, 8915, 8951, 9006, 9034, 9062, 9091, 
9153, 9181, 9209, 9244, 9272, 9304, 9342, 9370, 9399, 9426, 9459, 
9524, 9559, 9587, 9622, 9706, 9734, 9762, 9797, 9825, 9860, 9888, 
9903, 9946, 10010, 10050, 10095, 10133, 10161, 10178, 10224, 
10252, 10280, 10308, 10339, 10417, 10469, 10497, 10525, 10553, 
10567, 10609, 10641, 10665, 10707, 10742, 10767, 10802, 10830, 
10858, 10893, 10907, 10984, 11012, 11040, 11054, 11159, 11187, 
11229, 11257, 11271, 11313, 11341, 11375, 11411, 11435, 11467, 
11495, 11509, 11552, 11580, 11636, 11664, 11734, 11762, 11797, 
11809, 11867, 11895, 11923, 11951, 11979, 12021, 12035, 12077, 
12105, 12133, 12160, 12189, 12231, 12259, 12273, 12315, 12343, 
12385, 12399, 12441, 12469, 12497, 12535, 12553, 12592, 12630, 
12658, 12686, 12714, 12742, 12770, 12805, 12833, 12861, 12903, 
12917, 12938, 12987, 13015, 13056, 13085, 13116, 13138, 13179, 
13201, 13232, 13259, 13287, 13323, 13358, 13386, 13413, 13442, 
13470, 13497, 13532, 13561, 13603, 13630, 13658, 13694, 13722, 
13750, 13778, 13792, 13846, 13862, 13896, 13925, 13967, 13995, 
14009, 14051, 14064, 14121, 14149, 14177, 14205, 14233, 14268, 
14296, 14310, 14352, 14380, 14450, 14474, 14506, 14548, 14575, 
14590, 14618, 14661, 14688, 14726, 14758, 14821, 14849, 14877, 
14905, 14933, 14960, 14995, 15024, 15038, 15093, 15121, 15135, 
15181, 15209, 15237, 15264, 15308, 15322, 15353, 15399, 15427, 
15455, 15483, 15510, 15539, 15580, 15608, 15636, 15666, 15692, 
15729, 15741, 15780, 15811, 15853, 15911, 15940, 15961, 15996, 
16024, 16052, 16101, 16150, 16178, 16218, 16276, 16303, 16331, 
16374, 16401, 16417, 16455, 16482, 16513, 16555, 16585, 16612, 
16638, 16667, 16706, 16723, 16752, 16778, 16805, 16840, 16891, 
16918, 16933, 16976, 17044, 17120, 17143, 17178, 17219, 17233, 
17261, 17289, 17347, 17373, 17401, 17460, 17515, 17547, 17583, 
17602, 17626, 17653), tzone = "UTC", tclass = "Date", class = "Date"), 
    AverageOxygen = c(4.11230769230769, 3.80128205128205, 3.64576923076923, 
    5.76538461538462, 5.23153846153846, 5.14807692307692, 4.26590909090909, 
    3.71666666666667, 4.35884615384615, 3.25769230769231, 4.85288461538462, 
    5.61923076923077, 4.35576923076923, 5.72884615384615, 7.22692307692308, 
    2, 4.21923076923077, 4.67211538461538, 5.125, 4.74230769230769, 
    4.28846153846154, 5.10384615384615, 6.06346153846154, 3.24230769230769, 
    6.07884615384615, 5.89615384615385, 4.54807692307692, 5.21442307692308, 
    5.48461538461538, 6.70769230769231, 5.36538461538461, 5.17483974358974, 
    5.95, 5.55384615384615, 5.67153846153846, 5.53769230769231, 
    5.78307692307692, 6.57307692307692, 6.49192307692308, 6.36153846153846, 
    6.71992307692308, 6.51936923076923, 6.41, 7.14782608695652, 
    6.11307692307692, 6.20961538461538, 6.85277777777778, 6.82277777777778, 
    6.82846153846154, 6.35384615384615, 5.15769230769231, 6.64, 
    6.39384615384615, 6.88179487179487, 6.44153846153846, 6.82192307692308, 
    7.45923076923077, 7.03730769230769, 7.01214285714286, 6.99326923076923, 
    6.83269230769231, 7.20188461538462, 5.94901602564103, 4.195, 
    5.11826923076923, 6.94230769230769, 6, 9.515, 7.95634615384615, 
    7.645, 6.72096153846154, 6.09538461538462, 6.65636639676113, 
    6.80596153846154, 6.19564102564103, 7.03442307692308, 6.52769230769231, 
    7.48740384615385, 7.22692307692308, 7.05307692307692, 6.06953846153846, 
    5.41384615384615, 7.17278846153846, 7.47373076923077, 7.1822792022792, 
    6.80788461538462, 7.24076923076923, 7.54961538461538, 5.55653846153846, 
    8.41923076923077, 6.75423076923077, 7.13653846153846, 7.00192307692308, 
    7.09538461538462, 7.29730769230769, 7.42903846153846, 5.87115384615385, 
    5.94153846153846, 6.42153846153846, 6.74269230769231, 5.88730769230769, 
    6.41692307692308, 6.82653846153846, 6.34096153846154, 6.19807692307692, 
    6.79384615384615, 6.56230769230769, 4.40576923076923, 6.54115384615385, 
    6.02884615384615, 5.75666666666667, 5.01076923076923, 5.55115384615385, 
    7.14961538461538, 5.77942307692308, 6.22141025641026, 6.66192307692308, 
    6.06788461538462, 5.91153846153846, 5.37692307692308, 5.61346153846154, 
    5.40192307692308, 6.41019230769231, 5.07961538461538, 5.09391025641026, 
    2.42012820512821, 1.75173076923077, 4.14705128205128, 4.44538461538462, 
    4.42269230769231, 2.94395833333333, 4.88153846153846, 5.15941483516484, 
    5.35596153846154, 5.26211538461538, 4.02961538461538, 2.60641254578755, 
    1.14916666666667, 4.67846153846154, 4.47653846153846, 3.97942307692308, 
    2.27812937062937, 1.98057692307692, 1.92730769230769, 4.65846153846154, 
    4.47173076923077, 5.02192307692308, 5.22423076923077, 4.07393162393162, 
    3.72826923076923, 3.01666666666667, 3.96634615384615, 4.85800480769231, 
    6.00442307692308, 6.44865384615385, 6.33692307692308, 5.90365384615385, 
    6.57846153846154, 5.57615384615385, 6.25384615384615, 5.31096153846154, 
    5.13022435897436, 4.98307692307692, 5.95038461538462, 4.89730769230769, 
    5.2225, 5.805, 5.91642081447964, 5.97115384615385, 5.25051282051282, 
    6.03519230769231, 5.66884615384615, 5.87538461538461, 6.06269230769231, 
    5.81807692307692, 5.94423076923077, 6.19153846153846, 5.54194762684124, 
    5.31923076923077, 6.35384615384615, 6.92051282051282, 7.19038461538462, 
    3.90384615384615, 7.64230769230769, 6.03589743589744, 6.51538461538462, 
    6.92820512820513, 6.81153846153846, 6.55897435897436, 6.36192307692308, 
    7.22307692307692, 6.10961538461538, 5.93653846153846, 6.85, 
    6.66538461538462, 5.12307692307692, 6.06153846153846, 6.42179487179487, 
    6.32051282051282, 5.85384615384615, 6.27307692307692, 7.02692307692308, 
    7.025, 6.02307692307692, 6.33173076923077, 6.47692307692308, 
    5.37884615384615, 2.38644688644689, 5.91538461538462, 5.31730769230769, 
    4.83461538461538, 1.25149572649573, 1.75757936507937, 2.47307692307692, 
    4.47115384615385, 4.81548717948718, 4.43502747252747, 5.33873626373626, 
    5.19423076923077, 5.90384615384615, 4.84038461538462, 5.45769230769231, 
    5.89487179487179, 1.63846153846154, 5.35576923076923, 7.03846153846154, 
    5.59230769230769, 5.84230769230769, 6.024, 3.81153846153846, 
    3.83846153846154, 5.7, 6.10769230769231, 5.32307692307692, 
    5.59423076923077, 6.86923076923077, 6.69028286528286, 6.57792022792023, 
    5.83846153846154, 3.90384615384615, 0.761111111111111, 3.08098290598291, 
    4.68205128205128, 4.51730769230769, 5.82692307692308, 1.52692307692308, 
    2.55769230769231, 2.41410256410256, 2.32142697881828, 2.16333333333333, 
    0.778571428571429, 1.40384615384615, 2.93846153846154, 2.74326923076923, 
    5.20769230769231, 3.86269230769231, 4.02076923076923, 2.32545833333333, 
    4.35038461538462, 5.60307692307692, 3.755, 5.00961538461539, 
    4.36307692307692, 3.245, 4.38769230769231, 3.26269230769231, 
    4.00121082621083, 4.79653846153846, 4.46518518518519, 5.34461538461538, 
    0.555384615384615, 2.92332867132867, 4.17307692307692, 4.87461538461538, 
    5.50230769230769)), class = "data.frame", row.names = c(NA, 
-275L))

1 个答案:

答案 0 :(得分:2)

根据文档,my.data参数应为

  

时间序列的数据帧(包括标头和日期,作为行名或单独的列,称为“日期”(如果有)

您有一个名为“日期”的列,而不是“日期”(R区分大小写)。然后my.series参数表示期望

  

名称或列索引指示要分析的序列

由于默认值为1,这意味着它将尝试获取数据集中的第一列,即“日期”列。但是您确实想要AverageOxygen列。

我们可以使用正确的“日期”名称创建一个新列,并使用

分析正确的列
analyze.wavelet(transform(WaveletSite1Oxygen, date=Date), my.series="AverageOxygen")