如何处理(捕获)张量流警告以避免CUDNN_STATUS_SUCCESS(7 vs.0)未能设置cuDNN流

时间:2019-03-04 14:14:52

标签: tensorflow

在张量流中构建模型时,我尝试使用网格搜索尝试不同的超参数。因此,有时会收到以下警告:

W tensorflow/core/common_runtime/bfc_allocator.cc:211] Allocator (GPU_0_bfc) ran out of memory trying to allocate 3.50GiB. The caller indicates that this is not a failure, but may mean that there could be performance gains if more memory were available.

因此,我想跳过训练导致此警告的模型。

此外,我发现类似的警告导致以下错误:

F tensorflow/stream_executor/cuda/cuda_dnn.cc:231] Check failed: status == CUDNN_STATUS_SUCCESS (7 vs. 0)Failed to set cuDNN stream.

请注意,我有从二进制文件构建的tensorflow-gpu 1.12;窗户10; GPU:GTX 1080 Ti和cuda v9.0

1 个答案:

答案 0 :(得分:0)

将cuDNN从v7.4.2.24更新到v7.5.0.56后,我的问题得到解决