我正在与Keras进行时间序列预测。
我的输入数据中有10个时间步,它们的形状为(2688, 10, 1)
,即train_x.shape和train_y.shape为(2688,10,1)。
尝试将其输入模型时出现以下错误。
ValueError: Error when checking target: expected activation_1 to have 2 dimensions, but got array with shape (2688, 10, 1)
我给第一个lstm层输入的形状:input_shape=(1, time_steps)
**
我可以正确地重塑train_y吗?
**
time_steps=10
train_x = np.reshape(train_x, (train_x.shape[0], train_x.shape[1], 1))
train_y = np.reshape(train_y, (train_y.shape[0], train_y.shape[1], 1))
# lstm model
model = Sequential()
model.add(LSTM(128, input_shape=(time_steps, 1), return_sequences=True))
model.add(LSTM(64))
model.add(Dense(1))
model.add(Activation('linear'))
model.compile(loss='mse', optimizer='adam')
history = model.fit(train_x, train_y, epochs=10, validation_data=(test_x,
test_y), batch_size=64, verbose=1)
答案 0 :(得分:0)
如果您期望形状(2688、10、1),则不能输入_shape =(1,time_steps)。它应该input_shape =(time_steps,1)
答案 1 :(得分:0)
train_x = np.reshape(train_x, (train_x.shape[0], train_x.shape[1], 1))
train_y = np.reshape(train_y, (train_y.shape[0], train_y.shape[1], 1)
我认为错误在这里,您应该给定shape [0]和shape [1]之间的时间步长,即...
train_x = np.reshape(train_x, (train_x.shape[0], 10,train_x.shape[1]))
train_y = np.reshape(train_y, (train_y.shape[0],10, train_y.shape[1]))
这里的值“ 10”表示时间步长!