熊猫-多条件查询速度

时间:2019-03-02 16:32:42

标签: python pandas performance

我正在处理一些历史棒球数据,并试图获取以前比赛的比赛信息(击球手/投手)。

示例数据:

import pandas as pd

data = {'ID': ['A','A','A','A','A','A','B','B','B','B','B'],
        'Year' : ['2017-05-01', '2017-06-03', '2017-08-02', '2018-05-30', '2018-07-23', '2018-09-14', '2017-06-01', '2017-08-03', '2018-05-15', '2018-07-23', '2017-05-01'],
        'ID2' : [1,2,3,2,2,1,2,2,2,1,1],
       'Score 2': [1,4,5,7,5,5,6,1,4,5,6],
       'Score 3': [1,4,5,7,5,5,6,1,4,5,6], 
       'Score 4': [1,4,5,7,5,5,6,1,4,5,6]}
df = pd.DataFrame(data)

lookup_data = {"First_Person" : ['A', 'B'],
             "Second_Person" : ['1', '2'],
             "Year" : ['2018', '2018']}

lookup_df = pd.DataFrame(lookup_data)

查阅df具有当前比赛,df具有历史数据和当前比赛。

例如,我想为人物A与人物2进行比较,他们在任何以前的比赛中对战的结果是什么?

我可以这样:

history_list = []
def get_history(row, df, hist_list):
    #we filter the df to matchups containing both players before the previous date and sum all events in their history
    history = df[(df['ID'] == row['First_Person']) & (df['ID2'] == row['Second_Person']) & (df['Year'] < row['Year'])].sum().iloc[3:]
    #add to a list to keep track of results
    hist_list.append(list(history.values) + [row['Year']+row['First_Person']+row['Second_Person']])

然后使用apply执行,如下所示:

lookup_df.apply(get_history, df=df, hist_list = history_list, axis=1)

预期结果如下:

1st P  Matchup date 2nd p   Historical scores
A      2018-07-23     2     11 11 11
B      2018-05-15     2     7  7  7

但这非常慢-每次查找的过滤操作大约需要50毫秒。

是否有更好的方法可以解决此问题?目前要花费超过3个小时才能进行25万场历史对决。

1 个答案:

答案 0 :(得分:2)

您可以合并或映射和分组依据,

lookup_df['Second_Person'] =   lookup_df['Second_Person'].astype(int) 

merged = df.merge(lookup_df, left_on = ['ID', 'ID2'], right_on = ['First_Person', 'Second_Person'], how = 'left').query('Year_x < Year_y').drop(['Year_x', 'First_Person', 'Second_Person', 'Year_y'], axis = 1)

merged.groupby('ID', as_index = False).sum()

    ID  ID2 Score 2 Score 3 Score 4
0   A   1   1       1       1
1   B   4   7       7       7