我有一个大约有600,000个地点的邮政编码,城市,州和国家的熊猫数据框。我们称之为 my_df
我想为每个位置查找相应的 经度 和 纬度 。值得庆幸的是,this有一个数据库。我们称这个数据框为 zipdb 。
zipdb
包括邮政编码,城市,州和国家/地区的列。
所以,我想在zipdb
中查找所有位置(邮政编码,城市,州和国家/地区)。
def zipdb_lookup(zipcode, city, state, country):
countries_mapping = { "UNITED STATES":"US"
, "CANADA":"CA"
, "KOREA REP OF":"KR"
, "ITALY":"IT"
, "AUSTRALIA":"AU"
, "CHILE":"CL"
, "UNITED KINGDOM":"GB"
, "BERMUDA":"BM"
}
try:
slc = zipdb[ (zipdb.Zipcode == str(zipcode)) &
(zipdb.City == str(city).upper()) &
(zipdb.State == str(state).upper()) &
(zipdb.Country == countries_mapping[country].upper()) ]
if slc.shape[0] == 1:
return np.array(slc["Lat"])[0], np.array(slc["Long"])[0]
else:
return None
except:
return None
我尝试过pandas'.apply
以及for
循环来执行此操作。
两者都很慢。我知道有很多行,但我不禁想到更快的事情。
zipdb = pandas.read_csv("free-zipcode-database.csv") #linked to above
注意:我还在zibdb
上执行了此转换:
zipdb["Zipcode"] = zipdb["Zipcode"].astype(str)
功能调用:
#Defined a wrapper function:
def lookup(row):
"""
:param row:
:return:
"""
lnglat = zipdb_lookup(
zipcode = my_df["organization_zip"][row]
, city = my_df["organization_city"][row]
, state = my_df["organization_state"][row]
, country = my_df["organization_country"][row]
)
return lnglat
lnglat = list()
for l in range(0, my_df.shape[0]):
# if l % 5000 == 0: print(round((float(l) / my_df.shape[0])*100, 2), "%")
lnglat.append(lookup(row = l))
来自my_df
的示例数据:
organization_zip organization_city organization_state organization_country
0 60208 EVANSTON IL United Sates
1 77555 GALVESTON TX United Sates
2 23284 RICHMOND VA United Sates
3 53233 MILWAUKEE WI United Sates
4 10036 NEW YORK NY United Sates
5 33620 TAMPA FL United Sates
6 10029 NEW YORK NY United Sates
7 97201 PORTLAND OR United Sates
8 97201 PORTLAND OR United Sates
9 53715 MADISON WI United Sates
答案 0 :(得分:5)
使用merge()
比在每一行调用函数要快得多。确保字段类型匹配并删除字符串:
# prepare your dataframe
data['organization_zip'] = data.organization_zip.astype(str)
data['organization_city'] = data.organization_city.apply(lambda v: v.strip())
# get the zips database
zips = pd.read_csv('/path/to/free-zipcode-database.csv')
zips['Zipcode'] = zips.Zipcode.astype(str)
# left join
# -- prepare common join columns
zips.rename(columns=dict(Zipcode='organization_zip',
City='organization_city'),
inplace=True)
# specify join columns along with zips' columns to copy
cols = ['organization_zip', 'organization_city', 'Lat', 'Long']
data.merge(zips[cols], how='left')
=>
请注意,您可能需要扩展合并列和/或添加更多列以从拉链数据框进行复制。