image_input = Input(shape=(224, 224, 3))
model = ResNet50(weights='imagenet', include_top=True)
model.summary()
last_layer = model.get_layer('avg_pool').output
last_layer.shape
x= Flatten(name='flatten')(last_layer)
out = Dense(num_classes, activation='softmax', name='output_layer')(x)
custom_resnet_model = Model(inputs=image_input,outputs= out)
custom_resnet_model.summary()
for layer in custom_resnet_model.layers[:-1]:
layer.trainable = False
custom_resnet_model.layers[-1].trainable
custom_resnet_model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy'])
t=time.time()
hist = custom_resnet_model.fit(X_train, y_train, batch_size=32, epochs=1, verbose=1,
validation_data=(X_test, y_test))
print('Training time: %s' % (t - time.time()))
(loss, accuracy) = custom_resnet_model.evaluate(X_test, y_test, batch_size=10, verbose=1)
print("[INFO] loss={:.4f}, accuracy: {:.4f}%".format(loss,accuracy * 100))
我遇到此错误
输入0与平整层不兼容:预期的min_ndim = 3,运行x = Flatten(name ='flatten')(last_layer)时发现ndim = 2。
last_layer
的形状是TensorShape([Dimension(None), Dimension(2048)])
?
谁能解释在喀拉拉邦如何解决这个问题?