这可能是一个奇怪的问题,但是当高斯过程回归看到大量嘈杂的数据而没有太多信号时,它们怎么办?下面,我收集了大量噪声数据,并运行两种不同的GPR实现,它们均产生极小的置信区间。为什么是这种情况,有充分的理由吗?我的直觉告诉我,置信区间应该更大。 GPR对平均值的估计真的那么有信心吗?另外,除了添加白噪声核外,是否有适当的方法来填充方差估计?
import numpy as np
import gpflow as gpflow
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import DotProduct, WhiteKernel, Matern, RBF
## some data
X1 = np.array([ 2., 2., 3., 4., 5., 5., 5., 6., 6., 6., 7., 7., 7.,
8., 8., 8., 8., 8., 9., 9., 9., 9., 10., 11., 11., 12.,
12., 12., 13., 13., 14., 14., 15., 15., 15., 16.])
Y1 = np.array([-0.70007257, -0.69388464, -0.63062014, -0.72834303, -0.67526754,
1.00259286, -0.96141351, -0.08295884, 1.0727982 , -2.29816347,
-0.61594418, 1.13696593, -2.18716473, -0.35037363, 1.96273672,
1.31621059, -1.88566144, 1.80466116, -0.79665828, 2.40720146,
1.83116473, -1.67224082, -0.96766061, -0.67430408, 1.79624005,
-1.41192248, 1.01754167, 0.37327703, -1.1195072 , 0.71855107,
-1.16906878, 0.99336417, 1.12563488, -0.36836713, 0.12574823,
0.23294988])
## gpflow
model = gpflow.models.GPR(X=X1[:,None],
Y= Y1[:,None], kern=gpflow.kernels.RBF(1))
gpflow.train.ScipyOptimizer().minimize(model)
## scikit
kernel = RBF()
gpr = GaussianProcessRegressor(kernel=kernel,
random_state=0).fit(X= X1[:,None], y= Y1[:, None])
# plot function
def plot(m, gpflow =True):
plt.figure(figsize=(8, 4))
xtest = np.linspace(np.min(X1),np.max(X1), 20)[:,None]
line, = plt.plot(X1, Y1, 'x', mew=2)
if gpflow:
mu, var = m.predict_f(np.hstack((xtest, np.zeros_like(xtest))))
plt.plot(xtest, mu, color="green", lw=2, label="GPflow")
plt.fill_between(xtest[:, 0],
(mu - 2*np.sqrt(var))[:, 0],
(mu + 2*np.sqrt(var))[:, 0],
color="lightgreen", alpha=0.4)
else:
mu, se = m.predict(xtest, return_std=True)
plt.plot(xtest, mu, color="red", lw=2, label="Scipy")
plt.fill_between(xtest[:, 0],
(mu - 2*se)[:, 0],
(mu + 2*se)[:, 0],
color="red", alpha=0.4)
plt.legend()
[
答案 0 :(得分:1)
查看模型超参数的实际优化值通常很有帮助-在这种情况下,噪声方差,内核方差和内核长度标度:
class ... value
GPR/kern/lengthscales Parameter ... 3.7149993613788737
GPR/kern/variance Parameter ... 2.0572871322469534e-06
GPR/likelihood/variance Parameter ... 1.5461369937869296
因此,GP将所有内容解释为噪声(在这种情况下,长度标尺的实际值非常任意,重要的是微小的内核差异)。 (如果使用predict_y而不是predict_f,则应该获得覆盖大部分观察值的置信区间。)“ RBF”(我更喜欢平方指数-每个固定核都描述径向基函数...)核对以前的功能(而且这仅使用超参数的最大似然点估计值),因此从这个意义上讲没有太大的灵活性-一旦您解释完所有数据,GP在某种意义上就是“说”没有信号,因此您得到了先验后验-均值为零。这有帮助吗?