检查一个字符串是否包含来自不同数据帧的另一个字符串-Python

时间:2019-03-01 15:05:11

标签: python pandas dataframe

我有两个具有不同列和大小的数据框。

第一个有一些列,其中一个是字符串字段(列1)。第二个数据帧有2列,一列是字符串字段(第4列),其中两个单词之间用逗号隔开,另一列是整数字段(第5列)。

我需要验证数据框1中的第1列在第4列数据框2中具有单词,并在数据框1中用数据框2中的相应信息填充。

示例:

df1
    column 1                                column 2          column 3
0   bla bla sample1 bla bla sample2         a                 f
1   bla bla sample1 bla bla sample5         b                 g
2   bla bla sample3 bla bla sample4         c                 h
3   bla bla sample8 bla bla sample7         d                 i
4   bla bla sample1 bla bla sample2         e                 j

 df2
    column 4                       column 5
0   ('sample1', 'sample2'),        50
1   ('sample3', 'sample4'),        35 
2   ('sample1', 'sample5')         18

我需要输出:

Output:
df1
    column 1                               column 2  column 3  column 4                     column 5
0   bla bla sample1 bla bla sample2        a         f         ('sample1', 'sample2')     50
1   bla bla sample1 bla bla sample5        b         g         ('sample1', 'sample5')     18
2   bla bla sample3 bla bla sample4        c         h         ('sample3', 'sample4')     35
3   bla bla sample8 bla bla sample7        d         i         NaN        
4   bla bla sample1 bla bla sample2        e         j         ('sample1', 'sample2')     50

有什么想法吗?

谢谢!

1 个答案:

答案 0 :(得分:1)

我不保证这样做会特别快,但是可以完成工作。我们将使用set逻辑检查匹配项。我们必须跳过一些箍,以便我们可以存储比赛的元组列表。我认为这不是一个特别好的主意。

import numpy as np
import pandas as pd

df1['setc'] = df1['column 1'].str.split().apply(set)
# Initialize so addition works
df1['column 4'] = [[] for i in range(len(df1))]
df1['column 5'] = 0

for idx, row in df2.iterrows():
    m = (df1.setc.values & set(row['column 4'])) == set(row['column 4'])
    df1.loc[m, 'column 4'] += pd.Series([[row['column 4']] for x in range(len(m))])[m]
    df1.loc[m, 'column 5'] += row['column 5']

df1 = df1.drop(columns='setc')
# NaN where nothing matched
df1.loc[df1['column 4'].str.len().eq(0), ['column 4', 'column 5']] = np.NaN

输出:

                          column 1 column 2 column 3                                  column 4  column 5
0  bla bla sample1 sample5 sample2        a        f  [(sample1, sample2), (sample1, sample5)]      68.0
1  bla bla sample1 bla bla sample5        b        g                      [(sample1, sample5)]      18.0
2  bla bla sample3 bla bla sample4        c        h                      [(sample3, sample4)]      35.0
3  bla bla sample8 bla bla sample7        d        i                                       NaN       NaN
4  bla bla sample1 bla bla sample2        e        j                      [(sample1, sample2)]      50.0