我正在尝试根据我在网上找到的一些教程来运行以下代码:
import pandas as pd
from pyspark.sql import SparkSession
from pyspark.sql import functions
from pyspark.sql import udf
df_pd = pd.DataFrame(
data={'integers': [1, 2, 3],
'floats': [-1.0, 0.5, 2.7],
'integer_arrays': [[1, 2], [3, 4, 5], [6, 7, 8, 9]]}
)
df = spark.createDataFrame(df_pd)
df.show()
def square(x):
return x**2
from pyspark.sql.types import IntegerType
square_udf_int = udf(lambda z: square(z), IntegerType())
但是当我运行最后一行时,出现以下错误:
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'module' object is not callable
我正在Hadoop 2.7上使用spark 2.3.3。
谢谢
答案 0 :(得分:0)
似乎您是从pyspark.sql
导入的,而它应该是pyspark.sql.functions
喜欢...
import pyspark.sql.functions as F
udf_fun = F.udf (lambda..., Type())
答案 1 :(得分:-2)
似乎您是在以非Python方式调用UDF。在python中,规范至关重要。我做了以下更改,效果很好
import pandas as pd
from pyspark.sql import SparkSession
from pyspark.sql import functions
from pyspark.sql import udf
df_pd = pd.DataFrame(
data={'integers': [1, 2, 3],
'floats': [-1.0, 0.5, 2.7],
'integer_arrays': [[1, 2], [3, 4, 5], [6, 7, 8, 9]]}
)
df = spark.createDataFrame(df_pd)
df.show()
def square(x):
return x**2
def call_udf():
from pyspark.sql.types import IntegerType
square_udf_int = udf(lambda z: square(z), IntegerType())