如何在Tensorflow中使用GPU通过预训练的模型检测对象?

时间:2019-03-01 06:23:17

标签: tensorflow object-detection-api

我正在根据this教程使用Tensorflow来检测对象。它运行如此缓慢的原因是此行output_dict =sess.run(tensor_dict, feed_dict={image_tensor: np.expand_dims(image, 0)})。下面是整个功能代码:

def run_inference_for_single_image(image, graph):
with graph.as_default():
with tf.device('/gpu:0'):
    print('GPU is using')
    with tf.Session() as sess:

      time0 = datetime.datetime.now()                  

      # Get handles to input and output tensors
      ops = tf.get_default_graph().get_operations()
      all_tensor_names = {output.name for op in ops for output in op.outputs}
      tensor_dict = {}
      for key in [
          'num_detections', 'detection_boxes', 'detection_scores',
          'detection_classes', 'detection_masks'
      ]:
        tensor_name = key + ':0'
        if tensor_name in all_tensor_names:
          tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(
              tensor_name)

      time1 = datetime.datetime.now()               

      if 'detection_masks' in tensor_dict:
        # The following processing is only for single image
        detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])
        detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])
        # Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.
        real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)
        detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])
        detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])
        detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
            detection_masks, detection_boxes, image.shape[0], image.shape[1])
        detection_masks_reframed = tf.cast(
            tf.greater(detection_masks_reframed, 0.5), tf.uint8)
        # Follow the convention by adding back the batch dimension
        tensor_dict['detection_masks'] = tf.expand_dims(
            detection_masks_reframed, 0)
      image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')

      time2 = datetime.datetime.now()                 

      # Run inference
      output_dict = sess.run(tensor_dict,
                             feed_dict={image_tensor: np.expand_dims(image, 0)})
      time3 = datetime.datetime.now()      
      # all outputs are float32 numpy arrays, so convert types as appropriate
      output_dict['num_detections'] = int(output_dict['num_detections'][0])
      output_dict['detection_classes'] = output_dict[
          'detection_classes'][0].astype(np.uint8)
      output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
      output_dict['detection_scores'] = output_dict['detection_scores'][0]
      if 'detection_masks' in output_dict:
        output_dict['detection_masks'] = output_dict['detection_masks'][0]

      time4 = datetime.datetime.now()         

print(time1-time0, time2-time1, time3-time2, time4-time3)
return output_dict

我不知道如何在tf.session.run()中使用GPU。任何人都可以教我如何在session.run中使用GPU。

0 个答案:

没有答案