我正在尝试实现张量流回归模型,我的数据形状为train_X =(200,4)和train_Y =(200,)。我遇到形状错误,这是我的一段代码,任何人都可以提及我在哪里做错误。
df = pd.read_csv('all.csv')
df = df.drop('时间',轴= 1)
print(df.describe())#了解数据集
train_Y = df [“力量”]
train_X = df.drop('power',axis = 1)
train_X = numpy.asarray(train_X)
train_Y = numpy.asarray(train_Y)
n_samples = train_X.shape [0]
X = tf.placeholder('float',[None,len(train_X [0])])
Y = tf.placeholder(“ float”)
W = tf.Variable(rng.randn(),name =“ weight”)
b = tf.Variable(rng.randn(),name =“ bias”)
pred = tf.add(tf.multiply(X,W),b)
cost = tf.reduce_sum(tf.pow(pred-Y,2))/(2 * n_samples)
trainable =默认为True
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
init = tf.global_variables_initializer()
以tf.Session()作为会话:
# Run the initializer
sess.run(init)
# Fit all training data
for epoch in range(training_epochs):
for (x, y) in zip(train_X, train_Y):
sess.run(optimizer, feed_dict={X: x, Y: y})
# Display logs per epoch step
if (epoch+1) % display_step == 0:
c = sess.run(cost, feed_dict={X: train_X, Y:train_Y})
print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c), \
"W=", sess.run(W), "b=", sess.run(b))
print("Optimization Finished!")
training_cost = sess.run(cost, feed_dict={X: train_X, Y: train_Y})
print("Training cost=", training_cost, "W=", sess.run(W), "b=", sess.run(b), '\n')
# Graphic display
plt.plot(train_X, train_Y, 'ro', label='Original data')
plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
plt.legend()
plt.show()enter code here
答案 0 :(得分:0)
我改变了形状并解决了问题
train_y = np.reshape(train_y,(-1,1))