熊猫堆叠式条形图中的元素顺序

时间:2019-02-25 20:36:39

标签: python pandas matplotlib plot

我正在尝试绘制有关该地区5个地区的特定行业中家庭收入比例的信息。

我使用groupby按区域对数据框中的信息进行了排序:

df = df_orig.groupby('District')['Portion of income'].value_counts(dropna=False)
df = df.groupby('District').transform(lambda x: 100*x/sum(x))
df = df.drop(labels=math.nan, level=1)
ax = df.unstack().plot.bar(stacked=True, rot=0)
ax.set_ylim(ymax=100)

display(df.head())

    District  Portion of income
    A         <25%                 12.121212
              25 - 50%              9.090909
              50 - 75%              7.070707
              75 - 100%             2.020202

由于这种收入属于类别,因此我想以合理的方式对堆叠栏中的元素进行排序。产生的熊猫图如下。现在,排序(从每个栏的底部开始)是:

  • 25-50%
  • 50-75%
  • 75-100%
  • <25%
  • 不确定

我意识到这些字母是按字母顺序排序的,并且很好奇是否有一种方法可以设置自定义顺序。为了直观起见,我希望顺序是(再次从栏的底部开始):

  • 不确定
  • <25%
  • 25-50%
  • 50-75%
  • 75-100%

然后,我想翻转图例以显示此顺序的相反顺序(即,我希望图例在顶部具有75-100,因为这将在条的顶部)。

1 个答案:

答案 0 :(得分:2)

要将自定义排序顺序强加于收入类别,一种方法是将其转换为CategoricalIndex

要反转matplotlib图例条目的顺序,请使用以下问题中的get_legend_handles_labels方法:Reverse legend order pandas plot

import pandas as pd
import numpy as np
import math

np.random.seed(2019)

# Hard-code the custom ordering of categories
categories = ['unsure', '<25%', '25 - 50%', '50 - 75%', '75 - 100%']

# Generate some example data
# I'm not sure if this matches your input exactly
df_orig = pd.DataFrame({'District': pd.np.random.choice(list('ABCDE'), size=100), 
                        'Portion of income': np.random.choice(categories + [np.nan], size=100)})

# Unchanged from your code. Note that value_counts() returns a 
# Series, but you name it df
df = df_orig.groupby('District')['Portion of income'].value_counts(dropna=False)
df = df.groupby('District').transform(lambda x: 100*x/sum(x))

# In my example data, np.nan was cast to the string 'nan', so 
# I have to drop it like this
df = df.drop(labels='nan', level=1)

# Instead of plotting right away, unstack the MultiIndex
# into columns, then convert those columns to a CategoricalIndex 
# with custom sort order
df = df.unstack()

df.columns = pd.CategoricalIndex(df.columns.values, 
                                 ordered=True, 
                                 categories=categories)

# Sort the columns (axis=1) by the new categorical ordering
df = df.sort_index(axis=1)

# Plot
ax = df.plot.bar(stacked=True, rot=0)
ax.set_ylim(ymax=100)

# Matplotlib idiom to reverse legend entries 
handles, labels = ax.get_legend_handles_labels()
ax.legend(reversed(handles), reversed(labels))

Output