我尝试在线程应用程序中使用keras和可用的模型VGG16进行预测。但是,如果我在主线程中调用预测,则一切正常。但是,如果我在线程函数中进行预测(是否使用threading
,multiprocessing
,...
),它只会在预测过程中停顿:
这是最小的示例:
########################################
# Alter this variable
USE_THREADING = True
########################################
import numpy as np
import cv2
import copy
import threading
import keras
import platform
import tensorflow as tf
from keras.models import model_from_json
from multiprocessing import Process
def inference_handler(model_hash, frame_resized):
print("multiprocessing: before prediction call")
model_hash.predict(np.expand_dims(frame_resized, axis=0), batch_size = 1)
print("multiprocessing: after prediction call")
if __name__ == "__main__":
print("keras version:", keras.__version__)
print("tf vresion: ", tf.__version__)
print("python version:", platform.python_version())
model_hash = keras.applications.VGG16(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
# Perform the demo
cap = cv2.VideoCapture(0)
while(True):
# Capture frame-by-frame
ret, frame = cap.read()
# Process the keys
key = cv2.waitKey(1) & 0xFF
if key == ord('q'):
print("quit")
break
# Get the proper image for the network
frame_resized = cv2.resize(frame, (224, 224))
# show the images
cv2.imshow('frame',frame)
cv2.imshow('frame_resized',frame_resized)
# Predict
if USE_THREADING:
p = Process(target=inference_handler, args=(model_hash, frame_resized,))
p.start()
p.join()
else:
print("main thread: before prediction call")
model_hash.predict(np.expand_dims(frame_resized, axis=0), batch_size = 1)
print("main thread: after prediction call")
# When everything done, release the capture
cap.release()
cv2.destroyAllWindows()
USE_THREADING = False 给我:
Using TensorFlow backend.
keras version: 2.2.0
tf vresion: 1.8.0
python version: 3.5.2
2019-02-25 20:47:32.926696: I tensorflow/core/platform/cpu_feature_guard.cc:140] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
main thread: before prediction call
main thread: after prediction call
main thread: before prediction call
main thread: after prediction call
main thread: before prediction call
...
USE_THREADING = True (失败)给我:
Using TensorFlow backend.
keras version: 2.2.0
tf vresion: 1.8.0
python version: 3.5.2
2019-02-25 20:50:34.922696: I tensorflow/core/platform/cpu_feature_guard.cc:140] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
multiprocessing: before prediction call
答案 0 :(得分:1)
因此,如果将模型作为子过程的参数,则具有张量流后端的Keras不幸地在预测过程中出现了停止问题。但是,如果直接在子流程中创建模型,则一切正常。因此,解决方案是通过队列将帧发送到子进程。这是一个可行的解决方案:
import numpy as np
import cv2
import copy
import keras
import platform
import tensorflow as tf
from keras.models import model_from_json
from multiprocessing import Process, Queue
def inference_handler(frame_queue):
model_hash = keras.applications.VGG16(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
model_hash._make_predict_function()
while True:
print("multiprocessing: before queue")
frame_resized = frame_queue.get(block=True, timeout=None)
print("multiprocessing: before prediction call")
model_hash.predict(np.expand_dims(frame_resized, axis=0), batch_size = 1)
print("multiprocessing: after prediction call")
if __name__ == "__main__":
print("keras version:", keras.__version__)
print("tf version: ", tf.__version__)
print("python version:", platform.python_version())
frame_queue = Queue(maxsize=1)
p = Process(target=inference_handler, args=(frame_queue,))
p.start()
# p.join()
cap = cv2.VideoCapture(0)
while(True):
# Capture frame-by-frame
ret, frame = cap.read()
# Process the keys
key = cv2.waitKey(1) & 0xFF
if key == ord('q'):
print("quit")
break
# Get the proper image for the network
frame_resized = cv2.resize(frame, (224, 224))
# show the images
cv2.imshow('frame',frame)
cv2.imshow('frame_resized',frame_resized)
# Advertise the frame
if frame_queue.empty():
print("Put frame into the queue")
frame_queue.put_nowait(frame_resized)
# When everything done, release the capture
p.terminate()
cap.release()
cv2.destroyAllWindows()
这给了我
keras version: 2.2.0
tf version: 1.8.0
python version: 3.5.2
Put frame into the queue
multiprocessing: before queue
multiprocessing: before prediction call
Put frame into the queue
multiprocessing: after prediction call
multiprocessing: before queue
multiprocessing: before prediction call
Put frame into the queue
...