为什么numpy.round不能四舍五入我的数组?

时间:2019-02-23 18:44:19

标签: python numpy tensorflow rounding numpy-ndarray

我试图对由Keras模型预测结果输出的numpy数组取整。但是,在执行numpy.round / numpy.around之后,没有任何变化。

此处的最终目标是,如果数组小于或等于0.50,则将数组舍入为0;如果数组大于0.50,则将数组向上舍入。

代码在这里:

from keras.models import load_model

import numpy

model = load_model('tried.h5')
data = numpy.loadtxt("AppData\Roaming\MetaQuotes\Terminal\94DDB309C90B408373EFC53AC730F336\MQL4\Files\indicatorout.csv", delimiter=",")
data = numpy.array([data])
print(data)
outdata = model.predict(data)
print(outdata)
numpy.around(outdata, 0)
print(outdata)
numpy.savetxt("AppData\Roaming\MetaQuotes\Terminal\94DDB309C90B408373EFC53AC730F336\MQL4\Files\modelout.txt", outdata)

日志也在这里:

Using TensorFlow backend.
[[1.19539070e+01 1.72686310e+01 2.24426384e+01 1.82771435e+01
  2.23788052e+01 1.62105408e+01 1.44595184e+01 1.90179043e+01
  1.71749554e+01 1.69194088e+01 1.89911938e+01 1.76701393e+01
  5.19613740e-01 5.38522415e+01 9.64037247e+01 1.73570000e-04
  4.35710000e-04 9.55710000e-04]]
[[0.4215713]]
[[0.4215713]]

任何帮助将不胜感激,谢谢。

1 个答案:

答案 0 :(得分:1)

我假设您希望数组中的元素四舍五入到n个小数位。下面是这样做的示意图:

# sample array to work with
In [21]: arr = np.random.randn(4)

In [22]: arr
Out[22]: array([-0.94817409, -1.61453252,  0.16566428, -0.53507549])

# round to 3 decimal places; note that `arr` is still unaffected.
In [23]: arr.round(decimals=3)
Out[23]: array([-0.948, -1.615,  0.166, -0.535])

# if you want to round it to nearest integer
In [24]: arr_rint = np.rint(arr)

In [25]: arr_rint
Out[25]: array([-1., -2.,  0., -1.])

要使小数舍入就位,请按如下所示指定out=参数:

In [26]: arr.round(decimals=3, out=arr)
Out[26]: array([-0.948, -1.615,  0.166, -0.535])