我正在尝试使用cnn模型将癌细胞的图像分类为好,坏或平均。建立模型时出现以下错误。
TypeError Traceback
(most recent call last)
<ipython-input-12-40a51db8d561> in <module>()
3
4
----> 5
model.add(Conv2D(filters=32,kernel_size=5,strides=1,padding='same',activation='relu',input_shape = (256,256,1)))
6
model.add(MaxPool2D(pool_size=5,padding='same'))
7
~\Anaconda3\envs\tensorflow\lib\site-
packages\keras\engine\sequential.py in add(self,
layer)
130 raise TypeError('The added layer must be '
131 'an instance of class Layer. '
--> 132 'Found: ' +
str(layer))
133 self.built = False
134 if not self._layers:
TypeError: The added layer must be an instance of class Layer. Found:
<tensorflow.python.keras.layers.convolutional.Conv2D object at 0x00000162545A64A8>
任何人都可以帮助我确定问题所在。 这是代码段:
from tensorflow.keras.layers import Conv2D, MaxPooling2D
model = Sequential()
model.add(Conv2D(filters=32,kernel_size=5,strides=1,padding='same',activation='relu',input_shape = (256,256,1)))
model.add(MaxPool2D(pool_size=5,padding='same')
model.add(Conv2D(filters=50,kernel_size=5,strides=1,padding='same',activation='relu'))
model.add(MaxPool2D(pool_size=5,padding='same'))
model.add(Conv2D(filters=80,kernel_size=5,strides=1,padding='same',activation='relu'))
model.add(MaxPool2D(pool_size=5,padding='same'))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512,activation='relu'))
model.add(Dropout(rate=0.5))
model.add(Dense(2,activation='softmax'))
optimizer = Adam(lr=le-3)
model.compile(loss='categorical_crossentropy',
optimizer=optimizer,
metrics=['accuracy']
)
model.fit(x=tr_img_data, y=tr_lbl_data,
batch_size=6,
epochs=8)
model.summary()
答案 0 :(得分:0)
我尝试过,以下对我来说很好:
from tensorflow.python.keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense
from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.optimizers import Adam
model = Sequential()
model.add(Conv2D(filters=32,kernel_size=5,strides=1,padding='same',activation='relu', input_shape = (256,256,1)))
model.add(MaxPooling2D(pool_size=5,padding='same'))
model.add(Conv2D(filters=50,kernel_size=5,strides=1,padding='same',activation='relu'))
model.add(MaxPooling2D(pool_size=5,padding='same'))
model.add(Conv2D(filters=80,kernel_size=5,strides=1,padding='same',activation='relu'))
model.add(MaxPooling2D(pool_size=5,padding='same'))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512,activation='relu'))
model.add(Dropout(rate=0.5))
model.add(Dense(2,activation='softmax'))
optimizer = Adam(lr=1e-3)
model.compile(loss='categorical_crossentropy',
optimizer=optimizer,
metrics=['accuracy']
)
model.summary()
我唯一更改的是:将MaxPool2D
更改为MaxPooling2D
,并且在其中一层之后还缺少)
。编辑:添加了完整的代码,除.fit
之外是为了完整性。