用另一列Pandas DataFrame替换一列中的值

时间:2019-02-22 15:12:51

标签: python regex pandas replace

我有一个ID为字符串的pandas数据框df: 我正在尝试创建new_claim和new_description列

example df

最近的一次,我发现是Efficiently replace part of value from one column with value from another column in pandas using regex?,但这使用了拆分部分,并且由于描述更改,所以我无法一概而论。

我可以一口气

date_reg = re.compile(r'\b'+df['old_id'][1]+r'\b')

df['new_claim'] = df['claim'].replace(to_replace=date_reg, value=df['external_id'], inplace=False)

但是如果我有

date_reg = re.compile(r'\b'+df['claim']+r'\b')

然后我得到“ TypeError:'Series'对象是可变的,因此不能被散列”

我采用的另一种方法

df['new_claim'] = df['claim']

for i in range(5):
    old_id = df['old_id'][i]
    new_id = df['external_id'][i]

    df['new_claim'][i] = df['claim'][i].replace(to_replace=old_id,value=new_id)

给出TypeError:replace()不包含关键字参数

1 个答案:

答案 0 :(得分:1)

仅使用方法pandas.replace()

df.old_id = df.old_id.fillna(0).astype('int')

list_old = list(map(str, df.old_id.tolist()))
list_new = list(map(str, df.external_id.tolist()))

df['new_claim'] = df.claim.replace(to_replace=['Claim ID: ' + e for e in list_old], value=['Claim ID: ' + e for e in list_new], regex=True)
df['new_description'] = df.description.replace(to_replace=['\* ' + e + '\\n' for e in list_old], value=['* ' + e + '\\n' for e in list_new], regex=True)

产生以下输出:

enter image description here