我有一个像这样的时序数据的熊猫数据框
Timestamp X
0 2016-12-01 00:00:00 0.186090
1 2016-12-01 00:10:00 0.203160
2 2016-12-01 00:20:00 0.216228
3 2016-12-01 00:30:00 0.220723
4 2016-12-01 00:40:00 0.263620
5 2016-12-01 00:50:00 0.287217
6 2016-12-01 01:00:00 0.282319
7 2016-12-01 01:10:00 0.242778
8 2016-12-01 01:20:00 0.235190
9 2016-12-01 01:30:00 0.210077
10 2016-12-01 01:40:00 0.251426
11 2016-12-01 01:50:00 0.238118
12 2016-12-01 02:00:00 0.262105
13 2016-12-01 02:10:00 0.270865
14 2016-12-01 02:20:00 0.281123
15 2016-12-01 02:30:00 0.276698
16 2016-12-01 02:40:00 0.296046
17 2016-12-01 02:50:00 0.308164
18 2016-12-01 03:00:00 0.313092
19 2016-12-01 03:10:00 0.233784
我想将数据集转换成这样
Date F1 F2 F3 F4 F5 F6 .... F145
2016-12-01 0.186090 0.203160 0.216228 0.20723 0.263620 0.287217 .........
2016-12-02 ..................................................................
即,我想制作另一个包含145列的数据帧,每列表示一天中的特定时间段。 F1
表示00:00:00
,F2
表示00:10:00
..... F144
表示23:50:00
,F155
表示{{1} }。
在熊猫中实现这一目标的最有效方法是什么?
可以对这些任务执行数据透视,但是如何在时间戳列中使用数据透视??
答案 0 :(得分:1)
首先通过floor
删除时间-获取null
或date
-获取python对象日期,通过time
和pivot
创建列:
datetimes
最后将列转换为计数器,并将df['Timestamp'] = pd.to_datetime(df['Timestamp'])
df['Date'] = df['Timestamp'].dt.floor('D')
df['Hours'] = df['Timestamp'].dt.time
df = df.pivot('Date','Hours','X')
print (df)
Hours 00:00:00 00:10:00 00:20:00 00:30:00 00:40:00 00:50:00 \
Date
2016-12-01 0.18609 0.20316 0.216228 0.220723 0.26362 0.287217
Hours 01:00:00 01:10:00 01:20:00 01:30:00 01:40:00 01:50:00 \
Date
2016-12-01 0.282319 0.242778 0.23519 0.210077 0.251426 0.238118
Hours 02:00:00 02:10:00 02:20:00 02:30:00 02:40:00 02:50:00 \
Date
2016-12-01 0.262105 0.270865 0.281123 0.276698 0.296046 0.308164
Hours 03:00:00 03:10:00
Date
2016-12-01 0.313092 0.233784
设置为列:
Date
最后一列最后使用shift
:
df.columns = [f'F{x+1}' for x in range(len(df.columns))]
df = df.reset_index().rename_axis(None, axis=1)
print (df)
Date F1 F2 F3 F4 F5 F6 \
0 2016-12-01 0.18609 0.20316 0.216228 0.220723 0.26362 0.287217
F7 F8 F9 ... F11 F12 F13 F14 \
0 0.282319 0.242778 0.23519 ... 0.251426 0.238118 0.262105 0.270865
F15 F16 F17 F18 F19 F20
0 0.281123 0.276698 0.296046 0.308164 0.313092 0.233784
[1 rows x 21 columns]