在某个因素上使用group_by()
时会发生错误,即使此因素之后是removed from the model using the minus operator (-
)。我激励人心的例子:
library(tidyverse)
df = mtcars %>% mutate(am = factor(am))
fits = df %>%
group_by(am) %>%
do(fit = lm(formula(mpg ~ . - am), .)) # Returns the error
哪个给出以下错误消息:
`contrasts <-`(` tmp `中的错误,value = contr.funs [1 + isOF [nn]]):对比度只能应用于具有2个或更多水平的因子< / p>
如果我filter()
而不是组,我也会遇到相同的错误
fit_am0 = df %>%
filter(am == 0) %>%
lm(formula(mpg ~ . - am), .) # Returns the error
当我尝试删除的变量是一个因素(即两者的组合)时,好像formula()
函数未正确检测到负运算符(- am
)。这是我的猜测,因为以下示例可以正常工作:
fits = mtcars %>% # `am` is numeric
group_by(am) %>%
do(fit = lm(formula(mpg ~ . - am), .)) # No error
fit_am0 = df %>%
filter(am == 0) %>%
select(-am) %>% # `am` removed prior to running model
lm(formula(mpg ~ .), .) # No error
fits2 = mtcars %>%
mutate(vs = factor(vs)) %>% # A non-grouped factor, later removed
group_by(am) %>%
do(fit = lm(formula(mpg ~ . - vs), .)) # No error
这是一个错误吗?还是我在激励人心的例子中犯了错误?
答案 0 :(得分:0)
我找到了解决方案。在数据选项而不是公式选项(即lm(formula = formula(mpg ~ .), data = select(., -am))
)中删除因子。
library(tidyverse)
df = mtcars %>% mutate(am = factor(am))
fits = df %>%
group_by(am) %>%
do(fit = lm(
formula(mpg ~ .),
select(., -am)
)) # No error