部署tensorflow服务客户端脚本

时间:2019-02-21 06:51:53

标签: docker tensorflow kubernetes google-cloud-platform tensorflow-serving

我是tensorflow的新手,我正在学习如何部署生产模型。我已经在GCP云存储上部署了Tensorflow对象检测模型,并且该模型在Google Kubernetes引擎上可用并且具有端点。现在,我想部署使用gRPC的客户端脚本(而不是REST,以加快响应时间)。如何部署客户端脚本,以使其可以作为对外部世界的API请求使用,并且可以获取编码的图像数组并向服务模型发出请求,然后将其响应返回给用户?我希望它具有快速的响应时间,并可能一次处理多个请求。客户端脚本为:

import os

import argparse
from argparse import RawTextHelpFormatter

from grpc.beta import implementations
import numpy as np
from PIL import Image
import tensorflow as tf

from tensorflow_serving.apis import predict_pb2
from tensorflow_serving.apis import prediction_service_pb2_grpc

from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util
from object_detection.core.standard_fields import \
    DetectionResultFields as dt_fields

tf.logging.set_verbosity(tf.logging.INFO)

def load_image_into_numpy_array(input_image):
    image = Image.open(input_image)
    (im_width, im_height) = image.size
    image_arr = np.array(image.getdata()).reshape(
        (im_height, im_width, 3)).astype(np.uint8)
    image.close()
    return image_arr

def load_input_tensor(input_image):
    image_np = load_image_into_numpy_array(input_image)
    image_np_expanded = np.expand_dims(image_np, axis=0).astype(np.uint8)
    tensor = tf.contrib.util.make_tensor_proto(image_np_expanded)
    return tensor

def main(args):
    host, port = args.server.split(':')
    channel = implementations.insecure_channel(host, int(port))._channel
    stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)
    request = predict_pb2.PredictRequest()
    request.model_spec.name = args.model_name

    input_tensor = load_input_tensor(args.input_image)
    request.inputs['inputs'].CopyFrom(input_tensor)

    result = stub.Predict(request, 60.0)
    image_np = load_image_into_numpy_array(args.input_image)

    output_dict = {}
    output_dict[dt_fields.detection_classes] = np.squeeze(
        result.outputs[dt_fields.detection_classes].float_val).astype(np.uint8)
    output_dict[dt_fields.detection_boxes] = np.reshape(
        result.outputs[dt_fields.detection_boxes].float_val, (-1, 4))
    output_dict[dt_fields.detection_scores] = np.squeeze(
        result.outputs[dt_fields.detection_scores].float_val)

    category_index = label_map_util.create_category_index_from_labelmap(args.label_map,
                                                                        use_display_name=True)

    vis_util.visualize_boxes_and_labels_on_image_array(image_np,
      output_dict[dt_fields.detection_boxes],
      output_dict[dt_fields.detection_classes],
      output_dict[dt_fields.detection_scores],
      category_index,
      instance_masks=None,
      use_normalized_coordinates=True,
      line_thickness=8)
    output_img = Image.fromarray(image_np.astype(np.uint8))
    base_filename = os.path.splitext(os.path.basename(args.input_image))[0]
    output_image_path = os.path.join(args.output_directory, base_filename + "_output.jpg")
    tf.logging.info('Saving labeled image: %s' % output_image_path)
    output_img.save(output_image_path)

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description="Object detection grpc client.",
                                     formatter_class=RawTextHelpFormatter)
    parser.add_argument('--server',
                        type=str,
                        required=True,
                        help='PredictionService host:port')
    parser.add_argument('--model_name',
                        type=str,
                        required=True,
                        help='Name of the model')
    parser.add_argument('--input_image',
                        type=str,
                        required=True,
                        help='Path to input image')
    parser.add_argument('--output_directory',
                        type=str,
                        required=True,
                        help='Path to output directory')
    parser.add_argument('--label_map',
                        type=str,
                        required=True,
                        help='Path to label map file')

    args = parser.parse_args()
    main(args) 

我正在考虑使用docker构建微服务,其中包含tensorflow,tensorflow服务api和客户端脚本。

更新1 :我尝试使用grpc客户端并遇到问题。 由于我使用了kubeflow,因此请求的网址格式为http://HOST:8000/model/:predict。但是客户端脚本似乎不接受这种url格式。它仅接受HOST:PORT NUMBER格式,但出现错误

Traceback (most recent call last):
  File "object_detection_grpc_client.py", line 104, in <module>
    main(args)
  File "object_detection_grpc_client.py", line 41, in main
    stub = prediction_service_pb2_grpc.PredictionServiceStub('http://A.B.C.D:8000/model/my-model:predict')
  File "/usr/local/lib/python3.5/dist-packages/tensorflow_serving/apis/prediction_service_pb2_grpc.py", line 40, in __init__
    self.Classify = channel.unary_unary(
AttributeError: 'str' object has no attribute 'unary_unary'

当我仅使用A.B.C.D:8000作为服务器参数值时,出现错误:

Traceback (most recent call last):
  File "object_detection_grpc_client.py", line 104, in <module>
    main(args)
  File "object_detection_grpc_client.py", line 48, in main
    result = stub.Predict(request, 60.0)
  File "/usr/local/lib/python3.5/dist-packages/grpc/_channel.py", line 550, in __call__
    return _end_unary_response_blocking(state, call, False, None)
  File "/usr/local/lib/python3.5/dist-packages/grpc/_channel.py", line 467, in _end_unary_response_blocking
    raise _Rendezvous(state, None, None, deadline)
grpc._channel._Rendezvous: <_Rendezvous of RPC that terminated with:
    status = StatusCode.UNAVAILABLE
    details = "Socket closed"
    debug_error_string = "{"created":"@1550755989.677583779","description":"Error received from peer","file":"src/core/lib/surface/call.cc","file_line":1036,"grpc_message":"Socket closed","grpc_status":14}"
>

我直接使用了this存储库中的预测原虫。如何修改代码以解决问题?

1 个答案:

答案 0 :(得分:0)

如果使用grpc客户端,则主机格式应为HOST:PORT。 http://HOST:PORT/model是rest_api格式。确保您的端口正确。您能显示开始进行tf服务的方式吗?