我有这段代码:
csvData = str(request.GET.get('csvData'))
print("TYPE csvData", type(csvData))
print("CSV", csvData)
arr = np.array(csvData.splitlines())
print("ARR", arr)
print("TYPE arr", type(arr))
csvData
是一个字符串。
该代码显示以下输出:
TYPE csvData
CSV “ NUM,AIRLINE_ARR_ICAO,WAKE,SIBT,SOBT,PLANNED_TURNAROUND,DISTANCE_FROM_ORIGIN,DISTANCE_TO_TARGET \ n1,AEA,H,2016年1月1日 04:05:00,2016-01-01 14:10:00,605,9920.67,5776.89 \ n2,AEA,H,2016-01-01 04:25:00,2016-01-01 06:30:00,125.0,10060.80,483.93 \ n3,AVA,H,2016-01-01 05:05:00,2016-01-01 07:05:00,120.0,8033.86,8033.86 \ n4,IBE,H,2016-01-01 05:20:00,2016-01-01 10:40:00,320.0,0.00,8507.73 \ n5,IBE,H,2016-01-01 05:25:00,2016-01-01 10:50:00,325.0,6698.42,6698.42 \ n6,IBE,H,2016-01-01 05:30:00,2016-01-01 08:10:00,160.0,10699.06,1246.30 \ n7,IBE,H,2016-01-01 05:30:00,2016-01-01 11:00:00,330.0,9081.35,8033.86 \ n8,IBE,H,2016-01-01 05:40:00,2016-01-01 11:35:00,355.0,5776.89,8749.87 \ n9,ANE,M,2016-01-01 05:50:00,2016-01-01 14:50:00,540.0,284.73,284.73 \ n10,ETD,H,2016-01-01 06:35:00,2016-01-01 08:00:00,85.0,5647.10,5647.10 \ n11,IBS,M,2016-01-01 06:50:00,2016-01-01 08:00:00,70.0,547.36,1460.92 \ n12,IBE,H,2016-01-01 06:50:00,2016-01-01 10:35:00,225.0,6763.16,6763.16 \ n13,IBE,H,2016-01-01 06:50:00,2016-01-01 10:50:00,240.0,7120.40,7120.40 \ n14,IBE,H,2016-01-01 06:50:00,2016-01-01 10:55:00,245.0,7010.08,0.00 \ n15,QTR,H,2016-01-01 06:55:00,2016-01-01 08:30:00,95.0,5338.52,5338.52 \ n16,IBS,M,2016-01-01 07:00:00,2016-01-01 07:45:00,45.0,485.52,1721.09 \ n17,IBS,M,2016-01-01 07:00:00,2016-01-01 07:45:00,45.0,394.98,429.37 \ n18,ELY,M,2016-01-01 07:05:00,2016-01-01 08:30:00,85.0,3550.48,3550.48 \ n19,AAL,H,2016-01-01 07:05:00,2016-01-01 12:05:00,300.0,5925.61,5925.61 \ n20,TVF,M,2016-01-01 07:30:00,2016-01-01 08:10:00,40.0,1030.31,1030.31 \ n“
ARR ['“ NUM,AIRLINE_ARR_ICAO,WAKE,SIBT,SOBT,PLANNED_TURNAROUND,DISTANCE_FROM_ORIGIN,DISTANCE_TO_TARGET \ n1,AEA,H,2016年1月1日 04:05:00,2016-01-01 14:10:00,605,9920.67,5776.89 \ n2,AEA,H,2016-01-01 04:25:00,2016-01-01 06:30:00,125.0,10060.80,483.93 \ n3,AVA,H,2016-01-01 2016-05--01 05:05:00 07:05:00,120.0,8033.86,8033.86 \ n4,IBE,H,2016-01-01 05:20:00,2016-01-01 10:40:00,320.0,0.00,8507.73 \ n5,IBE,H,2016-01-01 05:25:00,2016-01-01 10:50:00,325.0,6698.42,6698.42 \ n6,IBE,H,2016-01-01 05:30:00,2016-01-01 08:10:00,160.0,10699.06,1246.30 \ n7,IBE,H,2016-01-01 05:30:00,2016-01-01 11:00:00,330.0,9081.35,8033.86 \ n8,IBE,H,2016-01-01 05:40:00,2016-01-01 11:35:00,355.0,5776.89,8749.87 \ n9,ANE,M,2016-01-01 05:50:00,2016-01-01 14:50:00,540.0,284.73,284.73 \ n10,ETD,H,2016-01-01 06:35:00,2016-01-01 08:00:00,85.0,5647.10,5647.10 \ n11,IBS,M,2016-01-01 06:50:00,2016-01-01 08:00:00,70.0,547.36,1460.92 \ n12,IBE,H,2016-01-01 06:50:00,2016-01-01 10:35:00,225.0,6763.16,6763.16 \ n13,IBE,H,2016-01-01 06:50:00,2016-01-01 10:50:00,240.0,7120.40,7120.40 \ n14,IBE,H,2016-01-01 06:50:00,2016-01-01 10:55:00,245.0,7010.08,0.00 \ n15,QTR,H,2016-01-01 06:55:00,2016-01-01 08:30:00,95.0,5338.52,5338.52 \ n16,IBS,M,2016-01-01 07:00:00,2016-01-01 07:45:00,45.0,485.52,1721.09 \ n17,IBS,M,2016-01-01 07:00:00,2016-01-01 07:45:00,45.0,394.98,429.37 \ n18,ELY,M,2016-01-01 07:05:00,2016-01-01 08:30:00,85.0,3550.48,3550.48 \ n19,AAL,H,2016-01-01 07:05:00,2016-01-01 12:05:00,300.0,5925.61,5925.61 \ n20,TVF,M,2016-01-01 07:30:00,2016-01-01 08:10:00,40.0,1030.31,1030.31 \ n“']
TYPE arr
我需要将arr
转换为pandas DataFrame。我写了这段代码:
new = []
for i in range(0,len(arr)):
line = arr[i].split(",")
new.append(line)
X = pd.DataFrame(new[1:],columns=new[0])
print("X",X.head())
但是它不能正常工作。我认为它不起作用,因为arr
是['".."']
而不是[..]
。
我们非常感谢您的帮助。
更新:
csvData = pd.read_csv(io.StringIO((request.GET.get('csvData'))))
print("TYPE csvData", type(csvData))
print("CSV", csvData.head())
TYPE csvData <class 'pandas.core.frame.DataFrame' CSV Empty DataFrame
Columns:
[NUM,AIRLINE_ARR_ICAO,WAKE,SIBT,SOBT,PLANNED_TURNAROUND,DISTANCE_FROM_ORIGIN,DISTANCE_TO_TARGET\n1,AEA,H,2016-01-01
04:05:00,2016-01-01 14:10:00,605,9920.67,5776.89\n2,AEA,H,2016-01-01
04:25:00,2016-01-01 06:30:00,125.0,10060.80,483.93\n3,AVA,H,2016-01-01
05:05:00,2016-01-01 07:05:00,120.0,8033.86,8033.86\n4,IBE,H,2016-01-01
05:20:00,2016-01-01 10:40:00,320.0,0.00,8507.73\n5,IBE,H,2016-01-01
05:25:00,2016-01-01 10:50:00,325.0,6698.42,6698.42\n6,IBE,H,2016-01-01
05:30:00,2016-01-01
08:10:00,160.0,10699.06,1246.30\n7,IBE,H,2016-01-01
05:30:00,2016-01-01 11:00:00,330.0,9081.35,8033.86\n8,IBE,H,2016-01-01
05:40:00,2016-01-01 11:35:00,355.0,5776.89,8749.87\n9,ANE,M,2016-01-01
05:50:00,2016-01-01 14:50:00,540.0,284.73,284.73\n10,ETD,H,2016-01-01
06:35:00,2016-01-01 08:00:00,85.0,5647.10,5647.10\n11,IBS,M,2016-01-01
06:50:00,2016-01-01 08:00:00,70.0,547.36,1460.92\n12,IBE,H,2016-01-01
06:50:00,2016-01-01
10:35:00,225.0,6763.16,6763.16\n13,IBE,H,2016-01-01
06:50:00,2016-01-01
10:50:00,240.0,7120.40,7120.40\n14,IBE,H,2016-01-01
06:50:00,2016-01-01 10:55:00,245.0,7010.08,0.00\n15,QTR,H,2016-01-01
06:55:00,2016-01-01 08:30:00,95.0,5338.52,5338.52\n16,IBS,M,2016-01-01
07:00:00,2016-01-01 07:45:00,45.0,485.52,1721.09\n17,IBS,M,2016-01-01
07:00:00,2016-01-01 07:45:00,45.0,394.98,429.37\n18,ELY,M,2016-01-01
07:05:00,2016-01-01 08:30:00,85.0,3550.48,3550.48\n19,AAL,H,2016-01-01
07:05:00,2016-01-01
12:05:00,300.0,5925.61,5925.61\n20,TVF,M,2016-01-01
07:30:00,2016-01-01 08:10:00,40.0,1030.31,1030.31\n]
Index: []
更新2:
csvData = pd.read_csv(io.StringIO((request.GET.get('csvData').replace('\\n', '\n'))))
print("TYPE csvData", type(csvData))
print("CSV", csvData.head())
TYPE csvData <class 'pandas.core.frame.DataFrame'>
CSV Empty DataFrame
Columns: [NUM,AIRLINE_ARR_ICAO,WAKE,SIBT,SOBT,PLANNED_TURNAROUND,DISTANCE_FROM_ORIGIN,DISTANCE_TO_TARGET
1,AEA,H,2016-01-01 04:05:00,2016-01-01 14:10:00,605,9920.67,5776.89
2,AEA,H,2016-01-01 04:25:00,2016-01-01 06:30:00,125.0,10060.80,483.93
3,AVA,H,2016-01-01 05:05:00,2016-01-01 07:05:00,120.0,8033.86,8033.86
4,IBE,H,2016-01-01 05:20:00,2016-01-01 10:40:00,320.0,0.00,8507.73
5,IBE,H,2016-01-01 05:25:00,2016-01-01 10:50:00,325.0,6698.42,6698.42
6,IBE,H,2016-01-01 05:30:00,2016-01-01 08:10:00,160.0,10699.06,1246.30
7,IBE,H,2016-01-01 05:30:00,2016-01-01 11:00:00,330.0,9081.35,8033.86
8,IBE,H,2016-01-01 05:40:00,2016-01-01 11:35:00,355.0,5776.89,8749.87
9,ANE,M,2016-01-01 05:50:00,2016-01-01 14:50:00,540.0,284.73,284.73
10,ETD,H,2016-01-01 06:35:00,2016-01-01 08:00:00,85.0,5647.10,5647.10
11,IBS,M,2016-01-01 06:50:00,2016-01-01 08:00:00,70.0,547.36,1460.92
12,IBE,H,2016-01-01 06:50:00,2016-01-01 10:35:00,225.0,6763.16,6763.16
13,IBE,H,2016-01-01 06:50:00,2016-01-01 10:50:00,240.0,7120.40,7120.40
14,IBE,H,2016-01-01 06:50:00,2016-01-01 10:55:00,245.0,7010.08,0.00
15,QTR,H,2016-01-01 06:55:00,2016-01-01 08:30:00,95.0,5338.52,5338.52
16,IBS,M,2016-01-01 07:00:00,2016-01-01 07:45:00,45.0,485.52,1721.09
17,IBS,M,2016-01-01 07:00:00,2016-01-01 07:45:00,45.0,394.98,429.37
18,ELY,M,2016-01-01 07:05:00,2016-01-01 08:30:00,85.0,3550.48,3550.48
19,AAL,H,2016-01-01 07:05:00,2016-01-01 12:05:00,300.0,5925.61,5925.61
20,TVF,M,2016-01-01 07:30:00,2016-01-01 08:10:00,40.0,1030.31,1030.31
]
Index: []
更新3:
这是生成csvData
的方式,
var reader = new FileReader();
reader.onload = (e) => {
// Use reader.result
this.setState({
csvData: reader.result
})
this.props.setCsvData(reader.result)
}
reader.readAsText(files[0])
然后我以这种方式将其发送到后端:
'&csvData='+JSON.stringify(this.state.csvData)
答案 0 :(得分:2)
使用read_csv方法加载数据。
Specifications<PcPlacement> specification = Specifications.where(null);
Specifications<PcPlacement> specificationInner = Specifications.where(null);
specificationInner = specificationInner.or(buildReferringEntitySpecificationWithContains(
criteria.getUserFullName(), PcPlacement_.pcUser, PcUser_.fullName));
specificationInner = specificationInner.or(buildReferringEntitySpecificationWithContains(
criteria.getUserEmailId(), PcPlacement_.pcUser, PcUser_.emailId));
specification = specification.and(specificationInner);