我对Python有点陌生。我有多个类似于以下内容的列表:
数据:
(5300,
53,
1290,
'`Tiytr`',
'`professional`',
1,
3,
datetime.datetime(2018, 10, 13, 0, 0),
datetime.datetime(2018, 9, 17, 0, 0))
它们按以下方式来存储:
((63, 65, 1200, '`Jsalem`', '`professional`', 2, 1, datetime.datetime(2018, 10, 13, 0, 0), datetime.datetime(2015, 10, 19, 0, 0)), (70, 71, 1175, '`Cme`', '`professional`', 1, 0, datetime.datetime(2018, 10, 13, 0, 0), datetime.datetime(2018, 10, 12, 0, 0)), (90, 55, 1100, '`Jerusalem`', '`professional`', 2, 1, datetime.datetime(2018, 10, 13, 0, 0), datetime.datetime(2015, 10, 20, 0, 0))
如何将它们转换为pandas
数据框?
答案 0 :(得分:1)
首先将其转换为列表,然后将其传递给pandas.DataFrame
import pandas as pd
import datetime
x = ((63, 65, 1200, '`Jsalem`', '`professional`', 2, 1, datetime.datetime(2018, 10, 13, 0, 0), datetime.datetime(2015, 10, 19, 0, 0)),
(70, 71, 1175, '`Cme`', '`professional`', 1, 0, datetime.datetime(2018, 10, 13, 0, 0), datetime.datetime(2018, 10, 12, 0, 0)),
(90, 55, 1100, '`Jerusalem`', '`professional`', 2, 1, datetime.datetime(2018, 10, 13, 0, 0), datetime.datetime(2015, 10, 20, 0, 0)))
df = pd.DataFrame(list(x))
print(df)
输出:
0 1 2 3 4 5 6 7 8
0 63 65 1200 `Jsalem` `professional` 2 1 2018-10-13 2015-10-19
1 70 71 1175 `Cme` `professional` 1 0 2018-10-13 2018-10-12
2 90 55 1100 `Jerusalem` `professional` 2 1 2018-10-13 2015-10-20