我有一个data_df,看起来像:
price vehicleType yearOfRegistration gearbox powerPS model kilometer fuelType brand notRepairedDamage postalCode
0 18300 coupe 2011 manuell 190 NaN 125000 diesel audi ja 66954
1 9800 suv 2004 automatik 163 grand 125000 diesel jeep NaN 90480
2 1500 kleinwagen 2001 manuell 75 golf 150000 benzin volkswagen nein 91074
3 3600 kleinwagen 2008 manuell 69 fabia 90000 diesel skoda nein 60437
4 650 limousine 1995 manuell 102 3er 150000 benzin bmw ja 33775
试图将分类列(vehicleType
)转换为虚拟变量(“一种热编码”):
columns = [ 'vehicleType' ] #, 'gearbox', 'model', 'fuelType', 'brand', 'notRepairedDamage' ]
for column in columns:
dummies = pd.get_dummies(data_df[column], prefix=column)
data_df.drop(columns=[column], inplace=True)
data_df = data_df.add(dummies, axis='columns')
但是缺少原始数据:
brand fuelType gearbox kilometer model notRepairedDamage ... vehicleType_coupe vehicleType_kleinwagen vehicleType_kombi vehicleType_limousine vehicleType_suv yearOfRegistration
0 NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN
1 NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN
2 NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN
3 NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN
4 NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN
那么,如何用假人替换给定的列?
答案 0 :(得分:3)
# Get one hot encoding of columns 'vehicleType'
one_hot = pd.get_dummies(data_df['vehicleType'])
# Drop column as it is now encoded
data_df = data_df.drop('vehicleType',axis = 1)
# Join the encoded df
data_df = data_df.join(one_hot)
data_df
答案 1 :(得分:2)
你可以使用更紧凑的方式:
data_df = pd.get_dummies(data,columns=['vehicleType'],drop_first=True)
此行将删除您的旧列“vehicleType”,并自动将创建的列加入您的数据集