我想建立一个Keras模型,该模型使用类似SPICE的数值方法进行正向传播。由于SPICE问题无法解析解决,因此我建立了以下课程。该类很好地实现了预测(数字正向代理)和确定梯度(解析地)。
班级:
# "..." notes places where code is ommited for conciseness
class SPICE_solver():
def __init__(self, num_inputs, num_outputs, ...):
...
self.net = build_model_SPICE_solver(num_inputs, num_outputs, ...)
def predict(self, activations, weights, ...):
'''
:param activations: shape: (?, num_inputs)
:param weights: shape: (1, num_inputs, num_outputs)
:return: vout shape: (?, num_outputs)
'''
...
out = np.zeros([activations.shape[0], weights.shape[-1]])
self.net.fit(x=[activations, weights],
y=[out],
epochs=200,
callbacks=[EarlyStoppingByLossVal(monitor='loss', value=self.acc, verbose=0)],
verbose=0,
steps_per_epoch=64)
self.vout = self.net.get_weights()
return self.vout # weights incidate the output of the 'layer'
def gradients(self, activations, weights, ...):
'''
:param activations: shape: (?, num_inputs)
:param weights: shape: (?, num_inputs, num_outputs)
:return: gradient: list of gradients for: activations, weights (w.r.t. vout)
'''
...
outputTensor = self.net.output
listOfVariableTensors = self.net.input
gradients = K.gradients(outputTensor, listOfVariableTensors)
sess = tf.InteractiveSession()
sess.run(tf.initialize_all_variables())
self.grad = sess.run(gradients, feed_dict={self.net.input[0]:activations, self.net.input[1]:weights})
return self.grad
我想使用此类在自定义更高级别的Keras层中完成正向传播(SPICE_solver.predict)和向后传播(SPICE_solver.gradients)。
自定义Keras图层:
class mac_nonLin_SPICE(Layer):
def __init__(self,
output_dim,
**kwargs):
self.output_dim = output_dim
super(mac_nonLin_SPICE, self).__init__(**kwargs)
def build(self, input_shape):
# Create a trainable weight variable for this layer.
self.kernel = self.add_weight(name='kernel',
shape=(1, int(input_shape[1]), self.output_dim),
initializer='glorot_uniform',
# constraint='UnitNorm',
trainable=True)
self.slvr = SPICE_solver(int(input_shape[1]), self.output_dim)
super(mac_nonLin_SPICE, self).build(input_shape) # Be sure to call this at the end
def call(self, x):
return self.slvr.predict(x, self.kernel)
# def reutrn gradient():????
# pass
def compute_output_shape(self, input_shape):
return (input_shape[0], self.output_dim)
我遇到了很多问题,以嵌套方式调用Keras模型。有没有在自定义Keras层中实现此类对象的实用方法?
编辑:我的直觉告诉我,使用底层TensorFlow API重建整个设计是最实用的方法,尽管不方便。仍在寻找一种简便的Keras解决方案。
非常感谢您的帮助!
答案 0 :(得分:0)
简而言之,我无法使用Keras完成此操作。这是我发现的最佳解决方案:
我使用Tensorflow低级API重新创建了网络,并定义了两个损失函数:
然后,我将优化器设置为最小化: 损失=损失1 +损失2 *(1-高斯(a *损失1))
位置:
这样,仅当Loss1小(SPICE解决方案良好)时,Loss2才会最小化。
希望这对某人有帮助。