自定义图层输出Keras的尺寸

时间:2019-04-08 22:28:06

标签: tensorflow keras

通常,keras层的输出维的形式为(None, c, h, w)(None, h, w, c),具体取决于channels_firstchannels_last的配置。

我正在尝试使用具有两个输入的自定义keras图层。当我打印模型摘要时,它不显示None维度。

如何对自定义图层进行编程以包括此None维度?

我认为这可能是我收到错误的原因

No data provided for "crfrnn". Need data for each key in: ['crfrnn']

crfrnn是我的自定义图层的名称

很不幸,我尝试用call()方法重塑输出,但无济于事。

我确保输入数据的形状和准备正确。请注意,在我尝试在plant_output层之上添加此层之前,我的代码训练得很好(请参见下面的摘要)

下面是自定义层的代码,它是从this github repository开始采用的:

class CrfRnnLayer(tf.keras.layers.Layer):
    """ Implements the CRF-RNN layer described in:

    Conditional Random Fields as Recurrent Neural Networks,
    S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang and P. Torr,
    ICCV 2015
    """

    def __init__(self, image_dims, num_classes,
                 theta_alpha, theta_beta, theta_gamma,
                 num_iterations, NCHW, **kwargs):
        self.image_dims = image_dims
        self.num_classes = num_classes
        self.theta_alpha = theta_alpha
        self.theta_beta = theta_beta
        self.theta_gamma = theta_gamma
        self.num_iterations = num_iterations
        self.NCHW = NCHW
        self.spatial_ker_weights = None
        self.bilateral_ker_weights = None
        self.compatibility_matrix = None
        super(CrfRnnLayer, self).__init__(**kwargs)

    def build(self, input_shape):

        if not self.NCHW:
            channel_axis = -1
            if input_shape[channel_axis] is None:
                raise ValueError('The channel dimension of the inputs '
                    'should be defined. Found `None`.')

            input_dim = input_shape[0][channel_axis]
            self.input_spec = [tf.keras.layers.InputSpec(shape=(None, input_shape[0][1], input_shape[0][2], input_shape[0][3])), tf.keras.layers.InputSpec(shape=(None, input_shape[1][1], input_shape[1][2], input_shape[1][3]))]

        else:
            channel_axis = 1
            if input_shape[channel_axis] is None:
                raise ValueError('The channel dimension of the inputs '
                    'should be defined. Found `None`.')

            input_dim = input_shape[0][channel_axis]
            self.input_spec = [tf.keras.layers.InputSpec(shape=(None, input_shape[0][1], input_shape[0][2], input_shape[0][3])), tf.keras.layers.InputSpec(shape=(None, input_shape[1][1], input_shape[1][2], input_shape[1][3]))]

        # Weights of the spatial kernel
        self.spatial_ker_weights = self.add_weight(name='spatial_ker_weights',
                                                   shape=(self.num_classes, self.num_classes),
                                                   initializer=_diagonal_initializer,
                                                   trainable=True)

        # Weights of the bilateral kernel
        self.bilateral_ker_weights = self.add_weight(name='bilateral_ker_weights',
                                                     shape=(self.num_classes, self.num_classes),
                                                     initializer=_diagonal_initializer,
                                                     trainable=True)

        # Compatibility matrix
        self.compatibility_matrix = self.add_weight(name='compatibility_matrix',
                                                    shape=(self.num_classes, self.num_classes),
                                                    initializer=_potts_model_initializer,
                                                    trainable=True)

        super(CrfRnnLayer, self).build(input_shape)

    def call(self, inputs):

        unaries = tf.transpose(inputs[0][0, :, :, :], perm=(2, 0, 1))
        rgb = tf.transpose(inputs[1][0, :, :, :], perm=(2, 0, 1))

        #input is channels first
        c, h, w = self.num_classes, self.image_dims[0], self.image_dims[1]

        all_ones = np.ones((c, h, w), dtype=np.float32)

        # Prepare filter normalization coefficients
        spatial_norm_vals = custom_module.high_dim_filter(all_ones, rgb, bilateral=False,
                                                          theta_gamma=self.theta_gamma)
        bilateral_norm_vals = custom_module.high_dim_filter(all_ones, rgb, bilateral=True,
                                                            theta_alpha=self.theta_alpha,
                                                            theta_beta=self.theta_beta)
        q_values = unaries

        for i in range(self.num_iterations):
            softmax_out = tf.nn.softmax(q_values, 0)

            # Spatial filtering
            spatial_out = custom_module.high_dim_filter(softmax_out, rgb, bilateral=False,
                                                        theta_gamma=self.theta_gamma)
            spatial_out = spatial_out / spatial_norm_vals

            # Bilateral filtering
            bilateral_out = custom_module.high_dim_filter(softmax_out, rgb, bilateral=True,
                                                          theta_alpha=self.theta_alpha,
                                                          theta_beta=self.theta_beta)
            bilateral_out = bilateral_out / bilateral_norm_vals

            # Weighting filter outputs
            message_passing = (tf.matmul(self.spatial_ker_weights,
                                         tf.reshape(spatial_out, (c, -1))) +
                               tf.matmul(self.bilateral_ker_weights,
                                         tf.reshape(bilateral_out, (c, -1))))

            # Compatibility transform
            pairwise = tf.matmul(self.compatibility_matrix, message_passing)

            # Adding unary potentials
            pairwise = tf.reshape(pairwise, (c, h, w))
            q_values = unaries - pairwise

        #output is channels last
        return tf.transpose(tf.reshape(q_values, (1, c, h, w)), perm=(0, 2, 3, 1))

    def compute_output_shape(self, input_shape):
        return input_shape

此层有两个输入,每个输入的大小为(None, 384, 512, 3)。我希望输出结果是一样的,但是当我编译模型时,生成的摘要如下(请注意,我没有在中间显示很多层,因为我违反了此平台上的字符限制,最重要的层要查看的是input_nodeplant_output和自定义crfrnn):

__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
input_node (InputLayer)         (None, 384, 512, 3)  0                                            
__________________________________________________________________________________________________
encoder_conv1 (Conv2D)          (None, 384, 512, 32) 128         input_node[0][0]                 
__________________________________________________________________________________________________
bneck1_dense_encoder1 (Conv2D)  (None, 384, 512, 8)  264         encoder_conv1[0][0]              
__________________________________________________________________________________________________
batch_normalization (BatchNorma (None, 384, 512, 8)  32          bneck1_dense_encoder1[0][0]      
__________________________________________________________________________________________________
leaky_re_lu (LeakyReLU)         (None, 384, 512, 8)  0           batch_normalization[0][0]        
__________________________________________________________________________________________________
conv1_dense_encoder1 (Conv2D)   (None, 384, 512, 4)  292         leaky_re_lu[0][0]                
__________________________________________________________________________________________________
dropout (Dropout)               (None, 384, 512, 4)  0           conv1_dense_encoder1[0][0]       
__________________________________________________________________________________________________
concatenate (Concatenate)       (None, 384, 512, 36) 0           encoder_conv1[0][0]              
                                                                 dropout[0][0]                    
__________________________________________________________________________________________________
bneck2_dense_encoder1 (Conv2D)  (None, 384, 512, 8)  296         concatenate[0][0]                
__________________________________________________________________________________________________
batch_normalization_1 (BatchNor (None, 384, 512, 8)  32          bneck2_dense_encoder1[0][0]      
__________________________________________________________________________________________________
leaky_re_lu_1 (LeakyReLU)       (None, 384, 512, 8)  0           batch_normalization_1[0][0]      
__________________________________________________________________________________________________
conv2_dense_encoder1 (Conv2D)   (None, 384, 512, 4)  292         leaky_re_lu_1[0][0]              
__________________________________________________________________________________________________
dropout_1 (Dropout)             (None, 384, 512, 4)  0           conv2_dense_encoder1[0][0]       
__________________________________________________________________________________________________
concatenate_1 (Concatenate)     (None, 384, 512, 40) 0           concatenate[0][0]                
                                                                 dropout_1[0][0]                  
__________________________________________________________________________________________________
bneck3_dense_encoder1 (Conv2D)  (None, 384, 512, 8)  328         concatenate_1[0][0]              
__________________________________________________________________________________________________
batch_normalization_2 (BatchNor (None, 384, 512, 8)  32          bneck3_dense_encoder1[0][0]      
__________________________________________________________________________________________________
leaky_re_lu_2 (LeakyReLU)       (None, 384, 512, 8)  0           batch_normalization_2[0][0]      
__________________________________________________________________________________________________
conv3_dense_encoder1 (Conv2D)   (None, 384, 512, 4)  292         leaky_re_lu_2[0][0]              
__________________________________________________________________________________________________
dropout_2 (Dropout)             (None, 384, 512, 4)  0           conv3_dense_encoder1[0][0]       
__________________________________________________________________________________________________
concatenate_2 (Concatenate)     (None, 384, 512, 12) 0           dropout[0][0]                    
                                                                 dropout_1[0][0]                  
                                                                 dropout_2[0][0]                  
__________________________________________________________________________________________________
encoder_concat1 (Concatenate)   (None, 384, 512, 44) 0           encoder_conv1[0][0]              
                                                                 concatenate_2[0][0]              
__________________________________________________________________________________________________
encoder_bneck1 (Conv2D)         (None, 384, 512, 22) 990         encoder_concat1[0][0]            
__________________________________________________________________________________________________
encoder_downsample1 (Conv2D)    (None, 192, 256, 22) 12122       encoder_bneck1[0][0]             
__________________________________________________________________________________________________
bneck1_dense_encoder2 (Conv2D)  (None, 192, 256, 8)  184         encoder_downsample1[0][0]        
__________________________________________________________________________________________________
batch_normalization_3 (BatchNor (None, 192, 256, 8)  32          bneck1_dense_encoder2[0][0]      
__________________________________________________________________________________________________
leaky_re_lu_3 (LeakyReLU)       (None, 192, 256, 8)  0           batch_normalization_3[0][0]      
__________________________________________________________________________________________________
conv1_dense_encoder2 (Conv2D)   (None, 192, 256, 4)  292         leaky_re_lu_3[0][0]              
__________________________________________________________________________________________________
dropout_3 (Dropout)             (None, 192, 256, 4)  0           conv1_dense_encoder2[0][0]       
__________________________________________________________________________________________________
concatenate_3 (Concatenate)     (None, 192, 256, 26) 0           encoder_downsample1[0][0]        
                                                                 dropout_3[0][0]                  
__________________________________________________________________________________________________
bneck2_dense_encoder2 (Conv2D)  (None, 192, 256, 8)  216         concatenate_3[0][0]              
__________________________________________________________________________________________________
batch_normalization_4 (BatchNor (None, 192, 256, 8)  32          bneck2_dense_encoder2[0][0]      
__________________________________________________________________________________________________
leaky_re_lu_4 (LeakyReLU)       (None, 192, 256, 8)  0           batch_normalization_4[0][0]      
__________________________________________________________________________________________________
conv2_dense_encoder2 (Conv2D)   (None, 192, 256, 4)  292         leaky_re_lu_4[0][0]              
__________________________________________________________________________________________________
dropout_4 (Dropout)             (None, 192, 256, 4)  0           conv2_dense_encoder2[0][0]       
__________________________________________________________________________________________________
concatenate_4 (Concatenate)     (None, 192, 256, 30) 0           concatenate_3[0][0]              
                                                                 dropout_4[0][0]                  
__________________________________________________________________________________________________
bneck3_dense_encoder2 (Conv2D)  (None, 192, 256, 8)  248         concatenate_4[0][0]              
__________________________________________________________________________________________________
batch_normalization_5 (BatchNor (None, 192, 256, 8)  32          bneck3_dense_encoder2[0][0]      
__________________________________________________________________________________________________
leaky_re_lu_5 (LeakyReLU)       (None, 192, 256, 8)  0           batch_normalization_5[0][0]      
__________________________________________________________________________________________________
conv3_dense_encoder2 (Conv2D)   (None, 192, 256, 4)  292         leaky_re_lu_5[0][0]              
__________________________________________________________________________________________________
dropout_5 (Dropout)             (None, 192, 256, 4)  0           conv3_dense_encoder2[0][0]       
__________________________________________________________________________________________________
concatenate_5 (Concatenate)     (None, 192, 256, 12) 0           dropout_3[0][0]                  
                                                                 dropout_4[0][0]                  
                                                                 dropout_5[0][0]                  
__________________________________________________________________________________________________
encoder_concat2 (Concatenate)   (None, 192, 256, 34) 0           encoder_downsample1[0][0]        
                                                                 concatenate_5[0][0]              
__________________________________________________________________________________________________
encoder_bneck2 (Conv2D)         (None, 192, 256, 17) 595         encoder_concat2[0][0]            
__________________________________________________________________________________________________
encoder_downsample2 (Conv2D)    (None, 96, 128, 17)  7242        encoder_bneck2[0][0]             
__________________________________________________________________________________________________
bneck1_dense_encoder3 (Conv2D)  (None, 96, 128, 8)   144         encoder_downsample2[0][0]        
__________________________________________________________________________________________________
batch_normalization_6 (BatchNor (None, 96, 128, 8)   32          bneck1_dense_encoder3[0][0]      
__________________________________________________________________________________________________
leaky_re_lu_6 (LeakyReLU)       (None, 96, 128, 8)   0           batch_normalization_6[0][0]      
__________________________________________________________________________________________________
conv1_dense_encoder3 (Conv2D)   (None, 96, 128, 4)   292         leaky_re_lu_6[0][0]              
__________________________________________________________________________________________________
dropout_6 (Dropout)             (None, 96, 128, 4)   0           conv1_dense_encoder3[0][0]       
__________________________________________________________________________________________________
concatenate_6 (Concatenate)     (None, 96, 128, 21)  0           encoder_downsample2[0][0]        
                                                                 dropout_6[0][0]                  
__________________________________________________________________________________________________
bneck2_dense_encoder3 (Conv2D)  (None, 96, 128, 8)   176         concatenate_6[0][0]              
__________________________________________________________________________________________________
batch_normalization_7 (BatchNor (None, 96, 128, 8)   32          bneck2_dense_encoder3[0][0]      
__________________________________________________________________________________________________
leaky_re_lu_7 (LeakyReLU)       (None, 96, 128, 8)   0           batch_normalization_7[0][0]      
__________________________________________________________________________________________________
conv2_dense_encoder3 (Conv2D)   (None, 96, 128, 4)   292         leaky_re_lu_7[0][0]              
__________________________________________________________________________________________________
dropout_7 (Dropout)             (None, 96, 128, 4)   0           conv2_dense_encoder3[0][0]       
__________________________________________________________________________________________________
concatenate_7 (Concatenate)     (None, 96, 128, 25)  0           concatenate_6[0][0]              
                                                                 dropout_7[0][0]                  
__________________________________________________________________________________________________
bneck3_dense_encoder3 (Conv2D)  (None, 96, 128, 8)   208         concatenate_7[0][0]              
__________________________________________________________________________________________________
batch_normalization_8 (BatchNor (None, 96, 128, 8)   32          bneck3_dense_encoder3[0][0]      
__________________________________________________________________________________________________
leaky_re_lu_8 (LeakyReLU)       (None, 96, 128, 8)   0           batch_normalization_8[0][0]      
__________________________________________________________________________________________________
conv3_dense_encoder3 (Conv2D)   (None, 96, 128, 4)   292         leaky_re_lu_8[0][0]              
__________________________________________________________________________________________________
dropout_8 (Dropout)             (None, 96, 128, 4)   0           conv3_dense_encoder3[0][0]       
__________________________________________________________________________________________________
concatenate_8 (Concatenate)     (None, 96, 128, 12)  0           dropout_6[0][0]                  
                                                                 dropout_7[0][0]                  
                                                                 dropout_8[0][0]                  
__________________________________________________________________________________________________

__________________________________________________________________________________________________
plant_conv (Conv2D)             (None, 384, 512, 32) 416         concatenate_20[0][0]             
__________________________________________________________________________________________________
plant_output (Conv2D)           (None, 384, 512, 3)  99          plant_conv[0][0]                 
__________________________________________________________________________________________________
crfrnn (CrfRnnLayer)            (1, 384, 512, 3)     27          plant_output[0][0]               
                                                                 input_node[0][0]                 
==================================================================================================
Total params: 41,833
Trainable params: 41,497
Non-trainable params: 336
__________________________________________________________________________________________________

请注意crfrnn层的形状(1、384、512、3)。我相信这会导致程序无法训练,并引发错误:

Epoch 1/2000
No data provided for "crfrnn". Need data for each key in: ['crfrnn']

1 个答案:

答案 0 :(得分:0)

问题有两个,第一个更重要。

在上面的代码中,在call()函数中,您看到:

unaries = tf.transpose(inputs[0][0, :, :, :], perm=(2, 0, 1))
rgb = tf.transpose(inputs[1][0, :, :, :], perm=(2, 0, 1))

我删除了它,而是写道:

unaries = inputs[0]    
rgb = inputs[1]

这假定通道首先被输入为通道,因此不需要转置。而且,但是像这样阅读它们,keras能够推断形状,并且摘要现在具有(None,c,h,w)作为该层的形状。

错误No data provided for "crfrnn". Need data for each key in: ['crfrnn']实际上对我来说是一个愚蠢的错误,我正在输入的标签字典的密钥错误(应该是crfrnn)。我将此内容发布在crfrnn存储库的原始github上,因为其他人很好奇如何将这一层应用到他们自己的网络中,而且我已经这样做了。