Matplotlib的底图似乎不存储地图的中心,以便以后对数据进行过度绘图

时间:2019-02-17 18:18:27

标签: python matplotlib matplotlib-basemap

我想将 NOAA地球系统研究实验室的物理科学部门的日平均温度绘制到使用matplotlib的{​​{1}}创建的地图上。

数据集可以从here作为netCDF文件下载。

但是,我的问题是Basemap似乎没有存储地图的中心(或边界框)坐标,因为随后的重叠绘图仅填充了地图的一部分,请参见下图:

Map

生成图形的代码如下:

Basemap

注意:如果我设置import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap import netCDF4 # to check whether a file exists (before downloading it) import os.path import sys fig1, ax1 = plt.subplots(1,1, figsize=(8,6) ) temperature_fname = 'air.sig995.2016.nc' url = 'https://www.esrl.noaa.gov/psd/thredds/fileServer/Datasets/ncep.reanalysis.dailyavgs/surface/{0}'.format( temperature_fname) if not os.path.isfile( temperature_fname ): print( "ERROR: you need to download the file {0}".format(url) ) sys.exit(1) # read netCDF4 dataset tmprt_dSet = netCDF4.Dataset( temperature_fname ) # extract (copy) the relevant data tmprt_vals = tmprt_dSet.variables['air'][:] - 273.15 tmprt_lat = tmprt_dSet.variables['lat'][:] tmprt_lon = tmprt_dSet.variables['lon'][:] # close dataset tmprt_dSet.close() # use the Miller projection map1 = Basemap( projection='mill', resolution='l', lon_0=0., lat_0=0. ) # draw coastline, map-boundary map1.drawcoastlines() map1.drawmapboundary( fill_color='white' ) # draw grid map1.drawparallels( np.arange(-90.,90.,30.), labels=[1,0,0,0] ) map1.drawmeridians( np.arange(-180.,180.,60.),labels=[0,0,0,1] ) # overplot temperature ## make the longitude and latitude grid projected onto map tmprt_x, tmprt_y = map1(*np.meshgrid(tmprt_lon,tmprt_lat)) ## make the contour plot CS1 = map1.contourf( tmprt_x, tmprt_y, tmprt_vals[0,:,:], cmap=plt.cm.jet ) cbar1 = map1.colorbar( CS1, location='right' ) cbar1.set_label( r'$T$ in $^\circ$C') plt.show() ,一切看起来都很好(这不是我想要的中心位置)

我觉得解决方案非常明显,希望能将我引向那个方向。

3 个答案:

答案 0 :(得分:2)

如前所述,数据的范围是0到360,而不是-180到180。因此,您需要

  • 将180度和360度之间的范围映射到-180度至0。
  • 将数据的后半部分移到上半部分的前面,以便对其进行升序排序。

在您的数据提取和绘图功能之间添加以下代码即可。

# map lon values to -180..180 range
f = lambda x: ((x+180) % 360) - 180
tmprt_lon = f(tmprt_lon)
# rearange data
ind = np.argsort(tmprt_lon)
tmprt_lon = tmprt_lon[ind]
tmprt_vals = tmprt_vals[:, :, ind]

完整代码:

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
import netCDF4

# read netCDF4 dataset
tmprt_dSet = netCDF4.Dataset('data/air.sig995.2018.nc')

# extract (copy) the relevant data
tmprt_vals = tmprt_dSet.variables['air'][:] - 273.15
tmprt_lat  = tmprt_dSet.variables['lat'][:]
tmprt_lon  = tmprt_dSet.variables['lon'][:]
# close dataset
tmprt_dSet.close()

###  Section added ################
# map lon values to -180..180 range
f = lambda x: ((x+180) % 360) - 180
tmprt_lon = f(tmprt_lon)
# rearange data
ind = np.argsort(tmprt_lon)
tmprt_lon = tmprt_lon[ind]
tmprt_vals = tmprt_vals[:, :, ind]

##################################


fig1, ax1 = plt.subplots(1,1, figsize=(8,6) )
# use the Miller projection
map1 = Basemap( projection='mill', resolution='l',
                lon_0=0., lat_0=0. )

# draw coastline, map-boundary
map1.drawcoastlines()
map1.drawmapboundary( fill_color='white' )

# draw grid 
map1.drawparallels( np.arange(-90.,90.,30.),  labels=[1,0,0,0] )
map1.drawmeridians( np.arange(-180.,180.,60.),labels=[0,0,0,1] )

# overplot temperature
## make the longitude and latitude grid projected onto map
tmprt_x, tmprt_y = map1(*np.meshgrid(tmprt_lon,tmprt_lat))

## make the contour plot
CS1 = map1.contourf( tmprt_x, tmprt_y, tmprt_vals[0,:,:], 
                     cmap=plt.cm.jet
                   )
cbar1 = map1.colorbar( CS1, location='right' )
cbar1.set_label( r'$T$ in $^\circ$C')

plt.show()

enter image description here

答案 1 :(得分:1)

这是具有挑战性的。我将数据数组分为两部分。第一部分跨度为0°至180°E。位于0°西侧的第二部分需要360°的经度偏移。必须对色图进行规范化并应用以获得通用参考色。这是工作代码和结果图:

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
import netCDF4
import matplotlib as mpl

#import os.path
#import sys

fig1, ax1 = plt.subplots(1,1, figsize=(10,6) )

temperature_fname =  r'.\air.sig995.2018.nc'

# read netCDF4 dataset
tmprt_dSet = netCDF4.Dataset( temperature_fname )

# extract (copy) the relevant data
shift_val = - 273.15
tmprt_vals = tmprt_dSet.variables['air'][:] + shift_val

tmprt_lat  = tmprt_dSet.variables['lat'][:]
tmprt_lon  = tmprt_dSet.variables['lon'][:]

# prep norm of the color map
color_shf = 40   # to get better lower range of colormap
normalize = mpl.colors.Normalize(tmprt_vals.data.min()+color_shf, \
                                 tmprt_vals.data.max())

# close dataset
#tmprt_dSet.close()

# use the Miller projection
map1 = Basemap( projection='mill', resolution='i', \
                lon_0=0., lat_0=0.)

# draw coastline, map-boundary
map1.drawcoastlines()
map1.drawmapboundary( fill_color='white' )

# draw grid 
map1.drawparallels( np.arange(-90.,90.,30.), labels=[1,0,0,0] )
map1.drawmeridians( np.arange(-180.,180.,60.), labels=[0,0,0,1] )

# overplot temperature
# split data into 2 parts at column 73 (longitude: +180)
# part1 (take location as is)
beg_col = 0
end_col = 73
grdx, grdy = np.meshgrid(tmprt_lon[beg_col:end_col], tmprt_lat[:])
tmprt_x, tmprt_y = map1(grdx, grdy)
CS1 = map1.contourf( tmprt_x, tmprt_y, tmprt_vals[0,:, beg_col:end_col], 
                     cmap=plt.cm.jet, norm=normalize)

# part2 (longitude is shifted -360 degrees, but -359.5 looks better)
beg_col4 = 73
end_col4 = 144
grdx, grdy = np.meshgrid(tmprt_lon[beg_col4:end_col4]-359.5, tmprt_lat[:])
tmprt_x, tmprt_y = map1(grdx, grdy)
CS4 = map1.contourf( tmprt_x, tmprt_y, tmprt_vals[0,:, beg_col4:end_col4], 
                     cmap=plt.cm.jet, norm=normalize)

# color bars CS1, CS4 are the same (normalized), plot one only
cbar1 = map1.colorbar( CS1, location='right' )
cbar1.set_label( r'$T$ in $^\circ$C')

plt.show()

结果图:

enter image description here

答案 2 :(得分:1)

到目前为止,发布的两个答案都可以解决我的问题(谢谢ImportanceOfBeingErnestswatchai)。

但是,我认为必须有一种更简单的方法来完成此操作(而简单我是指一些Basemap实用程序)。因此,我再次查看了文档[1],发现了到目前为止我忽略的内容:mpl_toolkits.basemap.shiftgrid。以下两行需要添加到代码中:

from mpl_toolkits.basemap import shiftgrid
tmprt_vals, tmprt_lon = shiftgrid(180., tmprt_vals, tmprt_lon, start=False)

请注意,必须在meshgrid调用之前 添加第二行。


[1] https://matplotlib.org/basemap/api/basemap_api.html