我需要计算用户在其进入网站的ENTERS之间产生的要约视图。
我有两个表:
ENTERS
+----+---------------------+---------+
| id | action_date | user_id |
+----+---------------------+---------+
| 1 | 2019-02-14 05:59:09 | 263124 |
| 2 | 2019-02-14 06:56:25 | 263124 |
| 3 | 2019-02-14 09:10:45 | 263124 |
| 4 | 2019-02-14 19:42:44 | 263124 |
| 5 | 2019-02-14 20:00:35 | 263124 |
| 6 | 2019-02-14 07:40:27 | 501064 |
| 8 | 2019-02-14 10:43:49 | 501064 |
| 9 | 2019-02-14 11:51:17 | 501064 |
| 11 | 2019-02-14 15:20:34 | 501064 |
| 12 | 2019-02-14 15:45:03 | 596244 |
| 13 | 2019-02-14 16:18:33 | 596244 |
| 14 | 2019-02-14 17:25:03 | 596244 |
| 15 | 2019-02-14 19:47:02 | 596244 |
+----+---------------------+---------+
VIEWS
+----+---------------------+---------+
| id | data | user_id |
+----+---------------------+---------+
| 1 | 2019-02-14 06:59:15 | 263124 |
| 2 | 2019-02-14 07:01:18 | 263124 |
| 3 | 2019-02-14 18:36:26 | 263124 |
| 4 | 2019-02-14 19:42:57 | 263124 |
| 5 | 2019-02-14 19:43:19 | 263124 |
| 6 | 2019-02-14 19:49:36 | 263124 |
| 7 | 2019-02-14 20:00:59 | 263124 |
| 8 | 2019-02-14 20:02:54 | 263124 |
| 9 | 2019-02-14 20:23:08 | 263124 |
| 10 | 2019-02-14 11:00:24 | 501064 |
| 11 | 2019-02-14 11:08:29 | 501064 |
| 12 | 2019-02-14 22:22:33 | 501064 |
| 13 | 2019-02-14 22:24:12 | 501064 |
| 14 | 2019-02-14 13:06:54 | 596244 |
| 15 | 2019-02-14 13:13:10 | 596244 |
| 16 | 2019-02-14 13:16:53 | 596244 |
| 17 | 2019-02-14 13:20:34 | 596244 |
| 18 | 2019-02-14 13:25:43 | 596244 |
| 19 | 2019-02-14 13:27:37 | 596244 |
| 20 | 2019-02-14 13:31:29 | 596244 |
| 21 | 2019-02-14 13:32:54 | 596244 |
| 22 | 2019-02-14 13:33:17 | 596244 |
| 23 | 2019-02-14 13:33:32 | 596244 |
| 24 | 2019-02-14 13:33:48 | 596244 |
| 25 | 2019-02-14 13:34:17 | 596244 |
| 26 | 2019-02-14 13:34:36 | 596244 |
| 27 | 2019-02-14 13:40:01 | 596244 |
| 28 | 2019-02-14 13:45:48 | 596244 |
| 29 | 2019-02-14 13:46:35 | 596244 |
| 30 | 2019-02-14 13:47:52 | 596244 |
| 31 | 2019-02-14 13:49:55 | 596244 |
| 32 | 2019-02-14 15:59:38 | 596244 |
| 33 | 2019-02-14 17:36:35 | 596244 |
| 34 | 2019-02-14 17:48:21 | 596244 |
| 35 | 2019-02-14 20:03:48 | 596244 |
+----+---------------------+---------+
我对mySQL 5.7.20数据库具有只读访问权限。 我认为我必须以某种方式使用参数,但我不知道如何执行此操作。
代码应该是这样的:
SELECT
t1.id,
t1.datetime,
t1.source,
t1.user_id,
COUNT(t2.id)
FROM
enters t1
LEFT JOIN views t2 ON t1.user_id = t2.user_id
WHERE
DATE(t1.datetime) BETWEEN '2019-01-01' AND '2019-01-02'
AND t2.datetime BETWEEN @t1.datetime and @t1.datetime_next
GROUP BY
t1.enter_id
我已设法通过以下公式在Excel中获得结果(也许它将有助于理解我要实现的目标):
=COUNTIFS(views!C:C;C14;views!B:B;">="&B14;views!B:B;"<"&mwids!B15)
但是该公式不是100%正确的,因为当列中的用户发生更改时,该公式会出现问题
预期结果: (注意:COUNT(views)基于Excel公式,因此在某些情况下可能会关闭,但它显示了我想要实现的目标)
+----+---------------------+---------+--------------+
| id | action_date | user_id | COUNT(views) |
+----+---------------------+---------+--------------+
| 1 | 2019-02-14 05:59:09 | 263124 | 0 |
| 2 | 2019-02-14 06:56:25 | 263124 | 2 |
| 3 | 2019-02-14 09:10:45 | 263124 | 1 |
| 4 | 2019-02-14 19:42:44 | 263124 | 3 |
| 5 | 2019-02-14 20:00:35 | 263124 | 0 |
| 6 | 2019-02-14 07:40:27 | 501064 | 0 |
| 8 | 2019-02-14 10:43:49 | 501064 | 2 |
| 9 | 2019-02-14 11:51:17 | 501064 | 0 |
| 11 | 2019-02-14 15:20:34 | 501064 | 0 |
| 12 | 2019-02-14 15:45:03 | 596244 | 1 |
| 13 | 2019-02-14 16:18:33 | 596244 | 0 |
| 14 | 2019-02-14 17:25:03 | 596244 | 2 |
| 15 | 2019-02-14 19:47:02 | 596244 | 0 |
+----+---------------------+---------+--------------+
答案 0 :(得分:0)
一个问题是您输入日期但没有请假日期。您可以使用相关的子查询来解决此问题
select e.*
,date_sub(
coalesce(
(select action_date from enters e1 where e1.user_id = e.user_id and e1.action_date > e.action_date limit 1)
,now()
)
,interval 1 second) leavedate
from enters e;
+------+---------------------+---------+---------------------+
| id | action_date | user_id | leavedate |
+------+---------------------+---------+---------------------+
| 1 | 2019-02-14 05:59:09 | 263124 | 2019-02-14 06:56:24 |
| 2 | 2019-02-14 06:56:25 | 263124 | 2019-02-14 09:10:44 |
| 3 | 2019-02-14 09:10:45 | 263124 | 2019-02-14 19:42:43 |
| 4 | 2019-02-14 19:42:44 | 263124 | 2019-02-14 20:00:34 |
| 5 | 2019-02-14 20:00:35 | 263124 | 2019-02-16 09:26:18 |
| 6 | 2019-02-14 07:40:27 | 501064 | 2019-02-14 10:43:48 |
| 8 | 2019-02-14 10:43:49 | 501064 | 2019-02-14 11:51:16 |
| 9 | 2019-02-14 11:51:17 | 501064 | 2019-02-14 15:20:33 |
| 11 | 2019-02-14 15:20:34 | 501064 | 2019-02-16 09:26:18 |
| 12 | 2019-02-14 15:45:03 | 596244 | 2019-02-14 16:18:32 |
| 13 | 2019-02-14 16:18:33 | 596244 | 2019-02-14 17:25:02 |
| 14 | 2019-02-14 17:25:03 | 596244 | 2019-02-14 19:47:01 |
| 15 | 2019-02-14 19:47:02 | 596244 | 2019-02-16 09:26:18 |
+------+---------------------+---------+---------------------+
13 rows in set (0.00 sec)
并在汇总查询中使用它
select v.user_id,e.action_date,count(data)
from enters e
join views v on v.user_id = e.user_id
where v.data between e.action_date and
date_sub(
coalesce(
(select action_date from enters e1 where e1.user_id = e.user_id and e1.action_date > e.action_date limit 1)
,now()
)
,interval 1 second)
group by v.user_id,e.action_date;
+---------+---------------------+-------------+
| user_id | action_date | count(data) |
+---------+---------------------+-------------+
| 263124 | 2019-02-14 06:56:25 | 2 |
| 263124 | 2019-02-14 09:10:45 | 1 |
| 263124 | 2019-02-14 19:42:44 | 3 |
| 263124 | 2019-02-14 20:00:35 | 3 |
| 501064 | 2019-02-14 10:43:49 | 2 |
| 501064 | 2019-02-14 15:20:34 | 2 |
+---------+---------------------+-------------+
6 rows in set (0.00 sec)
我注意到596244已完全退出-根据数据,这似乎是正确的,因为最早的输入日期晚于最早的查看日期。