我有一个包含字符串和浮点列表的数据框,可以说
Names Prob
[Anne, Mike, Anne] [10.0, 10.0, 80.0]
[Sophie, Andy, Vera, Kate] [30.0, 4.5, 5.5, 60.0]
[Josh, Anne, Sophie] [51, 24, 25]
我想做的是循环遍历Names
,如果预定义组中包含名称,请重新标记它,然后汇总Prob
中的相应数字。
例如,如果team1 = ['Anne', 'Mike', 'Sophie']
我要结束:
Names Prob
[Team_One] [100.0]
[Andy, Kate, Team_One, Vera] [4.5, 60.0, 30.0, 5.5]
[Josh, Team_One] [51, 49]
我写的是这个,但是我认为这有点荒谬,我正在循环内创建一个临时数据帧,然后进行分组;听起来对我来说太过分了,太沉重了。
请问有没有更有效的方法? (如果重要的话,我正在使用Python 3)
import pandas as pd
def pool(df):
team1 = ['Anne', 'Mike', 'Sophie']
names = df['Names']
prob = df['Prob']
out_names = []
out_prob = []
for key, name in enumerate(names):
# relabel if in team1 otherwise keep it the same
name = ['Team_One' if x in team1 else x for x in name]
# make a temp dataframe and group by name
temp = pd.DataFrame({'name': name, 'prob': prob[key]} )
temp = temp.groupby('name').sum()
# make the output
out_names.append(temp.index.tolist())
out_prob.append(temp['prob'].tolist())
df['Names'] = out_names
df['Prob'] = out_prob
return df
df = pd.DataFrame({
'Names':[['Anne', 'Mike', 'Anne'],
['Sophie', 'Andy', 'Vera', 'Kate'],
['Josh', 'Anne', 'Sophie']
],
'Prob': [[10., 10., 80.],
[30., 4.5, 5.5, 60.],
[51, 24, 25]
]
})
out = pool(df)
print(out)
谢谢!
答案 0 :(得分:2)
使用defaultdict
对list中的所有值求和,然后将其转换为元组列表并传递给DataFrame构造函数:
from collections import defaultdict
out = []
for a, b in zipped:
d = defaultdict(int)
for x, y in zip(a, b):
if x in team1:
d['Team_One'] +=y
else:
d[x] = y
out.append((list(d.keys()), list(d.values())))
df = pd.DataFrame(out, columns=['Names','Prob'])
print (df)
Names Prob
0 [Team_One] [100.0]
1 [Team_One, Andy, Vera, Kate] [30.0, 4.5, 5.5, 60.0]
2 [Josh, Team_One] [51, 49]
如果0
中没有Prob
值,则解决方案有效:
out = []
for a, b in zipped:
n, p = [],[]
tot = 0
for x, y in zip(a, b):
if x in team1:
tot +=y
else:
n.append(x)
p.append(y)
if tot != 0:
p.append(tot)
n.append('Team_One')
out.append((n, p))
df = pd.DataFrame(out, columns=['Names','Prob'])
print (df)
Names Prob
0 [Team_One] [100.0]
1 [Andy, Vera, Kate, Team_One] [4.5, 5.5, 60.0, 30.0]
2 [Josh, Team_One] [51, 49]
在熊猫中,使用列表的列的速度很慢,因此最好是先展平列表:
from itertools import chain
lens = [len(x) for x in df['Names']]
df = pd.DataFrame({
'row' : np.arange(len(df)).repeat(lens),
'Names' : list(chain.from_iterable(df['Names'].tolist())),
'Prob' : list(chain.from_iterable(df['Prob'].tolist()))
})
然后用isin
替换值并最后汇总sum
:
team1 = ['Anne', 'Mike', 'Sophie']
df.loc[df['Names'].isin(team1), 'Names'] = 'Team_One'
df = df.groupby(['row','Names'], as_index=False, sort=False)['Prob'].sum()
print (df)
row Names Prob
0 0 Team_One 100.0
1 1 Team_One 30.0
2 1 Andy 4.5
3 1 Vera 5.5
4 1 Kate 60.0
5 2 Josh 51.0
6 2 Team_One 49.0
答案 1 :(得分:1)
似乎无法解决创建新列表来替换旧列表的问题,因为从原始列表中删除项目的成本太高。我认为这可能是解决名称和问题的可行解决方案,如果名称不在team1中,则将名称和问题附加到新列表中。如果名称在team1中,则不要添加该名称,而应保留team1名称遇到的概率之和。如果在遍历行的每个名称之后该总和不为零,则表明至少找到了一个team1成员(假设所有概率均为正数,如果为true,则为idk)。然后,最后,我们将'Team_One'作为名称和概率总和追加到概率列表(如果总和非零),并用这些新创建的列表替换数据框的列表。
def pool(df):
# Set of team1 names for faster look up than a list
team1 = {'Anne', 'Mike', 'Sophie'}
for i, names in enumerate(df['Names']):
# iterating through every row and initializing new lists to replace the name/prob lists
new_names = []
new_probs = []
team1_prob = 0
for name, prob in zip(names, df['Probs'][i]):
# iterating through every name/prob pair.
if name not in team1:
# add the pair to the new lists if not in team1
new_names.append(name)
new_probs.append(prob)
else:
# keep a sum of probs for all team1 members found, but don't append their name
team1_prob += prob
if team1_prob != 0:
# assuming all probs are positive, thus if any team1 member was found, team1_prob must be nonzero
new_names.append('Team_One')
new_probs.append(team1_prob)
# replace lists in the original df
df['Names'][i] = new_names
df['Prob'][i] = new_probs
return df