我正在尝试在编译时制作一个可以处理字符的模板。在这种情况下,我想施加一个约束,即必须始终存在一定数量的给定字符的精确倍数。
在没有完全匹配的情况下,我想在包的开头用0填充它们。
(顺便说一句,其动机是希望(在编译时,作为一个更大的问题的一部分)增加对将二进制和十六进制文字映射到std::array<unsigned char, N>
的支持,除了填充不是字节的倍数的东西)。
这是我为使填充起作用而要做的简化示例:
// Thingy operates on N*4 chars - if that's not met use inheritance to 0 pad until it is met.
template<char ...Args>
struct thingy : thingy<0, Args...> {
// All we do here is recursively add one more 0 via inheritance until the N*4 rule is met
};
// This specialisation does the real work, N=1 case only
template<char a, char b, char c, char d>
struct thingy<a,b,c,d> {
enum { value = (a << 24) | (b << 16) | (c << 8) | d };
};
// This handles chunking the N*4 things into N cases of work. Does work along the way, only allowed for exact N*4 after padding has happened.
template <char a, char b, char c, char d, char ...Args>
struct thingy<a,b,c,d,Args...> : thingy<a,b,c,d> {
static_assert(sizeof...(Args) % 4 == 0); // PROBLEM: this is a we're a better match than the template that pads things, how do we stop that?
// Do something with the value we just got and/or the tail as needed
typedef thingy<a,b,c,d> head;
typedef thingy<Args...> tail;
};
int main() {
thingy<1,1,1,1,1>(); // This should be equivalent to writing thingy<0,0,0,1,1,1,1,1>()
}
这击中了我的static_assert
。问题是我们总是在这里匹配错误的专业化,这是我期望的,因为它更加专业化。
所以我环顾四周,发现了一些相同问题for a function的示例,但据我所知,这两个都不适用。
我尝试了其他一些方法,但都没有达到我希望的效果,首先是在enable_if
上天真地sizeof...(Args)
恰好在我想要的位置:
template <char a, char b, char c, char d, typename std::enable_if<sizeof...(Args) % 4 == 0, char>::type ...Args>
struct thingy<a,b,c,d,Args...> : thingy<a,b,c,d> {
// ...
};
尽管据我所知,这是不合法的,并且肯定不能在我的编译器上使用-在需要查询sizeof...(Args)
的时候,Args
还不存在。
据我所知,我们也不能合法地在包后添加另一个模板参数,这也失败了:
template <char a, char b, char c, char d, char ...Args, typename std::enable_if<sizeof...(Args) % 4 == 0, int>::type=0>
struct thingy<a,b,c,d,Args...> : thingy<a,b,c,d> {
// ...
};
有错误:
pad_params_try3.cc:17:8: error: default template arguments may not be used in partial specializations
我还在继承本身中尝试了SFINAE,但这似乎并不是一个合法的地方:
template <char a, char b, char c, char d, char ...Args>
struct thingy<a,b,c,d,Args...> : std::enable_if<sizeof...(Args) % 4 == 0, thingy<a,b,c,d>>::type {
// ...
};
因为我们同时击中了static_assert
和失败,这是enable_if
中的错误。
pad_params_try4.cc:17:8: error: no type named 'type' in 'struct std::enable_if<false, thingy<'\001', '\001', '\001', '\001'> >'
struct thingy<a,b,c,d,Args...> : std::enable_if<sizeof...(Args) % 4 == 0, thingy<a,b,c,d>>::type {
^~~~~~~~~~~~~~~~~~~~~~~
pad_params_try4.cc:18:5: error: static assertion failed
static_assert(sizeof...(Args) % 4 == 0);
据我能从阅读更多this might even be considered a defect中看出来的信息,但这对我目前的帮助不大。
如何使用C ++ 14 gcc 6.x中的功能解决此问题?是否有比完全回到绘图板更简单的选择?
答案 0 :(得分:2)
具有多重继承和填充的中间帮助结构的方法稍有不同吗?
// This handles chunking the N*4 things into N cases of work. Does work along the way, only allowed for exact N*4 after padding has happened.
template <char a, char b, char c, char d, char... Args>
struct thingy_impl : thingy_impl<a, b, c, d>, thingy_impl<Args...> {
static_assert(sizeof...(Args) % 4 == 0);
// Do something with the value we just got and/or the tail as needed
typedef thingy_impl<a,b,c,d> head;
typedef thingy_impl<Args...> tail;
};
template<char a, char b, char c, char d>
struct thingy_impl<a,b,c,d> {
enum { value = (a << 24) | (b << 16) | (c << 8) | d };
};
template<int REMAINDER, char... Args>
struct padding;
template<char... Args>
struct padding<0,Args...> { using type = thingy_impl<Args...>; };
template<char... Args>
struct padding<1,Args...> { using type = thingy_impl<0,0,0,Args...>; };
template<char... Args>
struct padding<2,Args...> { using type = thingy_impl<0,0,Args...>; };
template<char... Args>
struct padding<3,Args...> { using type = thingy_impl<0,Args...>; };
template<char... Args>
struct thingy : padding<sizeof...(Args) % 4, Args...>::type { };
int main() {
thingy<1,1,1,1,1>(); // This should be equivalent to writing thingy<0,0,0,1,1,1,1,1>()
}
答案 1 :(得分:2)
首先,这是C ++ 17中的一个简单解决方案,它使用递归if constexpr
辅助函数为您填充:
template<char ... Args>
auto getThingyPadded()
{
if constexpr (sizeof...(Args) % 4 != 0)
return getThingyPadded<0, Args...>();
else
return thingy<Args...>{};
}
要制作此C ++ 14,我们需要使用SFINAE而不是if constexpr
。我们可以添加一个为我们计算sizeof...(Args)
的呼叫来规避您所描述的问题:
template<bool B, class U = void>
using enableIfT = typename std::enable_if<B, U>::type;
template<std::size_t N, enableIfT<(N % 4 == 0)>* = nullptr, char ... Args>
auto getThingyPaddedHelper()
{
return thingy<Args...>{};
}
template<std::size_t N, enableIfT<(N % 4 != 0)>* = nullptr, char ... Args>
auto getThingyPaddedHelper()
{
return getThingyPaddedHelper<N+1, nullptr, 0, Args...>();
}
template<char ... Args>
auto getThingyPadded()
{
return getThingyPaddedHelper<sizeof...(Args), nullptr, Args...>();
}
答案 2 :(得分:1)
我会用头/尾删除列表并使用std::tuple
,结果是:
// No variadic here
template <char a, char b, char c, char d>
struct thingy {
enum { value = (a << 24) | (b << 16) | (c << 8) | d };
};
template <typename Seq, char... Cs>
struct thingies_impl;
template <std::size_t ...Is, char... Cs>
struct thingies_impl<std::index_sequence<Is...>, Cs...>
{
private:
static constexpr char get(std::size_t n)
{
constexpr char cs[] = {Cs...};
constexpr std::size_t paddingSize = (4 - (sizeof...(Cs) % 4)) % 4;
return (n < paddingSize) ? '\0' : cs[n - paddingSize];
}
public:
using type = std::tuple<thingy<get(4 * Is),
get(4 * Is + 1),
get(4 * Is + 2),
get(4 * Is + 3)>...>;
};
template <char... Cs>
using thingies = thingies_impl<std::make_index_sequence<(sizeof...(Cs) + 3) / 4>, Cs...>;
答案 3 :(得分:0)
另一种多重继承方法(对Jarod42进行了更正和简化(谢谢!)。
#include <utility>
template <char a, char b, char c, char d, char ... Args>
struct t_base : public t_base<Args...>
{
typedef t_base<a,b,c,d> head;
typedef t_base<Args...> tail;
};
template <char a, char b, char c, char d>
struct t_base<a, b, c, d>
{ enum { value = (a << 24) | (b << 16) | (c << 8) | d }; };
template <typename, typename>
struct t_helper;
template <std::size_t ... Is, char ... Cs>
struct t_helper<std::index_sequence<Is...>,
std::integer_sequence<char, Cs...>>
: public t_base<(Is, '0')..., Cs...>
{ };
template <char ... Cs>
struct thingy :
public t_helper<std::make_index_sequence<(4u - sizeof...(Cs) % 4u) % 4u>,
std::integer_sequence<char, Cs...>>
{ };
int main ()
{
}