并行嵌套熊猫行上的循环循环

时间:2019-02-14 09:27:25

标签: python pandas multiprocessing

我有一个与此类似的python代码:

df = pd.read_csv('genelist.csv', names = ['ID', 'Tag'])

matrix = np.zeros((df.shape[0], df.shape[0]))

for element in range(df.shape[0]):
    for Element in range(element, df.shape[0]):
        matrix[element, Element] = distance(df['Tag'].iloc[element], df['Tag'].iloc[Element]

distance()是一个复杂的函数,用于计算两个标签之间的距离。 我的数据帧长8000行,我需要加快处理速度。 我昨天晚上开始了我的脚本, 12小时后还没有结束。 我当时在看multiprocessing库,但由于从未使用过它,所以不知道是否可能。

distance函数如下所示:

def penn_to_wn(tag):
    """
    Convert between a Penn Treebank tag to a simplified Wordnet tag
    """

    if tag[0] == 'N':
        return 'n'

    if tag.startswith('V'):
        return 'v'

    if tag.startswith('J'):
        return 'a'

    if tag.startswith('R'):
        return 'r'

    return None

def tagged_to_synset(word, tag):
    """
    Returns synset of a couple of word, WordNet tag
    """

    wn_tag = penn_to_wn(tag)
    if wn_tag is None:
        return None

    try:
        return wn.synsets(word, wn_tag)[0]
    except:
        return None

def NS_sentence_similarity(sentence1, sentence2):
    """
    Compute the sentence similarity using Wordnet
    Distance(A, A) == 1,
    Distance(A, B) != Distance(B, A)
    """
    # Tokenize and tag
    sentence1 = pos_tag(word_tokenize(sentence1))
    sentence2 = pos_tag(sentence2.split())

    # Get the synsets for the tagged words
    synsets1 = [tagged_to_synset(*tagged_word) for tagged_word in sentence1]
    synsets2 = [tagged_to_synset(*tagged_word) for tagged_word in sentence2]

    # Filter out the Nones
    synsets1 = [ss for ss in synsets1 if ss]
    synsets2 = [ss for ss in synsets2 if ss]

    score, count = 0.0, 0

    # For each word in the first sentence
    for synset in synsets1:
        # Get the similarity value of the most similar word in the other sentence
        try:
            best_score = max([synset.path_similarity(ss) for ss in synsets2])
        except:
            best_score = 0
        #print(best_score)
        # Check that the similarity could have been computed
        if best_score is not None:
            score += best_score
            count += 1

    # Average the values
    if count != 0:
        score /= count
    return score

def distance(sentence1, sentence2):
    """
    Compute the sentence similarity using Wordnet
    Distance(A, A) == 1,
    Distance(A, B) == Distance(B, A)
    """
    return (NS_sentence_similarity(sentence1, sentence2) + 
            NS_sentence_similarity(sentence2, sentence1)) / 2 

您知道任何可行的方法吗?

0 个答案:

没有答案