熊猫遍历行并找到列名

时间:2019-02-05 07:11:31

标签: python pandas loops

我有两个数据框:

df = pd.DataFrame({'America':["Ohio","Utah","New York"],
                   'Italy':["Rome","Milan","Venice"],
                   'Germany':["Berlin","Munich","Jena"]});


df2 = pd.DataFrame({'Cities':["Rome", "New York", "Munich"],
                   'Country':["na","na","na"]})

我想在df2“城市”列上进行查找,以找到我(df)上的城市,并将城市所在的国家/地区(df列名称)附加到df2国家/地区列中

2 个答案:

答案 0 :(得分:9)

按字典将meltmap一起使用:

df1 = df.melt()
print (df1)
  variable     value
0  America      Ohio
1  America      Utah
2  America  New York
3    Italy      Rome
4    Italy     Milan
5    Italy    Venice
6  Germany    Berlin
7  Germany    Munich
8  Germany      Jena

df2['Country'] = df2['Cities'].map(dict(zip(df1['value'], df1['variable'])))
#alternative, thanks @Sandeep Kadapa 
#df2['Country'] = df2['Cities'].map(df1.set_index('value')['variable'])
print (df2)
     Cities  Country
0      Rome    Italy
1  New York  America
2    Munich  Germany

答案 1 :(得分:1)

在熔化并重命名第一个数据帧之后:

df1 = df.melt().rename(columns={'variable': 'Country', 'value': 'Cities'})

解决方案是简单的合并:

df2 = df2[['Cities']].merge(df1, on='Cities')