如何在数据框列上正确使用.apply(lambda x :)

时间:2019-02-13 20:47:45

标签: python pandas dataframe lambda apply

我遇到的问题是Im从df_modified['lat'] = df.coordinates.apply(lambda x: x[0])收到错误,它返回错误TypeError: 'float' object is not subscriptable。由于“坐标”已经是列表(请参阅JSON SNIPPET),因此我尝试使用lambda提取元素[0]并将其放置在名为“ lat”的新列中,并将元素[1]放置在新列名为“ long”。任何有关此问题的帮助将不胜感激。谢谢!

import pandas as pd
import json
import requests
from pandas.io.json import json_normalize

# READS IN JSON
source = requests.get('www.url.com')
data = json.loads(source.text)

# Flattens the JSON data since it had nested dictionaries
df = pd.io.json.json_normalize(data)

# Renamed "lat_long.coordinates" because the "." was confusing .apply() function
df.rename(columns={'lat_long.coordinates': 'coordinates'}, inplace=True)

# Created a new data frame with seleted columns
df_modified = df.loc[:, ['county_name', 'arrests', 'incident_count']]

# Attempt to create a new column "lat" and "long" and place the elemnts accordingly  i.e. [-75.802503,  41.820569]
df_modified['lat'] = df.coordinates.apply(lambda x: x[0])
df_modified['long'] = df.coordinates.apply(lambda x: x[1])

print(df_modified.head(30))

样本JSON片段

{
    ":@computed_region_amqz_jbr4": "587",
    ":@computed_region_d3gw_znnf": "18",
    ":@computed_region_nmsq_hqvv": "55",
    ":@computed_region_r6rf_p9et": "36",
    ":@computed_region_rayf_jjgk": "295",
    "arrests": "1",
    "county_code": "44",
    "county_code_text": "44",
    "county_name": "Mifflin",
    "fips_county_code": "087",
    "fips_state_code": "42",
    "incident_count": "1",
    "lat_long": {
      "type": "Point",
      "coordinates": [
        -77.620031,
        40.612749
      ]
    }

1 个答案:

答案 0 :(得分:0)

您可以采用其他方法。在过滤列之前先使用latlong

import pandas as pd

import json

with open('sample.json') as infile:
    data = json.load(infile)

df = pd.io.json.json_normalize(data)

df.rename(columns={'lat_long.coordinates': 'coordinates'}, inplace=True)
df['lat'] = df['coordinates'].apply(lambda x: x[0])
df['long'] = df['coordinates'].apply(lambda x: x[1])

# Created a new data frame with seleted columns
df_modified = df.loc[:, ['county_name', 'arrests', 'incident_count', 'lat', 
                         'long']]