我是转学的新手,我正在研究2类图像的分类。我正在使用InceptionV3对这些图像进行分类。我的资料 为.jpg格式。文件夹结构采用以下格式。由于我有2个类别,因此我也给出了“ binary_crossentropy”。但是面临问题。
Parentfolder / train / categorie1
Parentfolder / train / categorie2Parentfolder / test / categorie1
Parentfolder / test / categorie2
from keras.applications.inception_v3 import InceptionV3
from keras.preprocessing import image
from keras.models import Model
from keras.layers import Dense, GlobalAveragePooling2D
from keras import backend as K
# create the base pre-trained model
base_model = InceptionV3(weights='imagenet', include_top=False)
# add a global spatial average pooling layer
x = base_model.output
x = GlobalAveragePooling2D()(x)
# let's add a fully-connected layer
x = Dense(1024, activation='relu')(x)
x = Dense(512, activation='relu')(x)
x = Dense(32, activation='relu')(x)
# and a logistic layer -- we have 2 classes
predictions = Dense(2, activation='softmax')(x)
# this is the model we will train
model = Model(inputs=base_model.input, outputs=predictions)
for layer in base_model.layers:
layer.trainable = False
# we chose to train the top 2 inception blocks, i.e. we will freeze
# the first 249 layers and unfreeze the rest:
for layer in model.layers[:249]:
layer.trainable = False
for layer in model.layers[249:]:
layer.trainable = True
model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"])
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1./255)
training_set = train_datagen.flow_from_directory(
'C:/Users/Desktop/Transfer/train/',
target_size=(64, 64),
batch_size=5,
class_mode='binary')
test_set = test_datagen.flow_from_directory(
'C:/Users/Desktop/Transfer/test/',
target_size=(64, 64),
batch_size=5,
class_mode='binary')
model.fit_generator(
training_set,
steps_per_epoch=1000,
epochs=10,
validation_data=test_set,
validation_steps=100)
答案 0 :(得分:1)
替换此行
predictions = Dense(2, activation='softmax')(x)
具有:
predictions = Dense(1, activation='sigmoid')(x)
或将目标编码为列,例如[1,0,1]
与[[0,1],[1,0],[0,1]]