我想使用PGGAN生成器为基于Encoder-Generator训练的真实输入图像找到相似的图像。下面是我的实现:
# load pre-trained generator
sess = tf.InteractiveSession()
with open('network-snapshot-final.pkl', 'rb') as file:
G, D, Gs = pickle.load(file)
# network parameters
image_size = 1024
input_shape = (image_size, image_size, 1)
batch_size = 8
kernel_size = 3
filters = 16
latent_dim = 512
epochs = 100
# build an encoder
inputs = Input(shape=input_shape, name='encoder_input')
x = inputs
for i in range(10):
filters *= 2
x = Conv2D(filters=filters,
kernel_size=kernel_size,
activation='relu',
strides=2,
padding='same')(x)
# generate latent vector
x = Flatten()(x)
x = Dense(2048, activation='relu')(x)
z_sim = Dense(latent_dim, name='z_sim')(x)
encoder = Model(inputs, z_sim, name='encoder')
# define a custom loss function
def loss_enc(x, z_sim):
im_g = tf.convert_to_tensor(Gs.run(z_sim.eval(), labels))
im_g2 = tf.reshape(im_g, [-1, 1024, 1024, 1])
los = mse(K.flatten(x), K.flatten(im_g2))
return los
编译模型后,遇到如下错误消息:
encoder.compile(optimizer='rmsprop', loss=loss_enc)
InvalidArgumentError:必须输入占位符张量的值 'encoder_input_19',其dtype的浮动类型为[?,1024,1024,1] [[{{node encoder_input_19}} = Placeholderdtype = DT_FLOAT,形状= [?,1024,1024,1], _device =“ / job:localhost / replica:0 / task:0 / device:GPU:0”]] [[{{node z_sim_12 / BiasAdd / _713}} = _Recvclient_terminated = false, recv_device =“ / job:localhost /副本:0 / task:0 / device:CPU:0”, send_device =“ / job:localhost /副本:0 / task:0 / device:GPU:0”, send_device_incarnation = 1,tensor_name =“ edge_127_z_sim_12 / BiasAdd”, tensor_type = DT_FLOAT, _device =“ / job:localhost /副本:0 /任务:0 /设备:CPU:0”]]
如何为此目的正确实现损失功能?
答案 0 :(得分:0)
首先:
def loss_enc(x, z_sim):
def loss(y_pred, y_true):
# Things you would do with x, z_sim and store in 'result' (for example)
return result
return loss
编译模型时:
encoder.compile(optimizer='rmsprop', loss=loss_enc(x, z_sim))