将时间间隔分类为R中的日期

时间:2019-02-10 16:03:35

标签: r timestamp data.table intervals tidyverse

我有一个非常大的数据集,需要将时间间隔分成多个日期以进行进一步分析。

下面是我的数据集示例:

require(data.table)

RawDT = data.table(
   TimeStampID = c("4"),
  DateTimeFrom = c("2019-02-10 16:28:03"),
    DateTimeTo = c("2019-02-12 02:04:03")
)

以下是所需结果:

ResultDT = data.table(
           ID = c("1","2","3"),
  TimeStampID = c("4","4","4"),
           DS = c("2019-02-10","2019-02-11","2019-02-12"),
     TimeFrom = c("16:28:03","00:00:00","00:00:00"),
       TimeTo = c("23:59:59","23:59:59","02:04:03")
)

有人可以指导我使用哪个函数从RawDT实现ResultDT吗?

1 个答案:

答案 0 :(得分:1)

好的,这是边界重复的内容,因此,我鼓励主持人在认为合适的情况下关闭该主题,并删除我的帖子。

但是,我在年初和年末(here)遇到类似的问题(但不完全相同,这就是我要回答的问题),而@Jaap创建了一个很棒的(简洁的)解决方案,逻辑也可以在这里应用,例如:

library(data.table)

RawDT[, `:=` (DateTimeFrom = as.POSIXct(DateTimeFrom), DateTimeTo = as.POSIXct(DateTimeTo))]

RawDT[RawDT[, rep(.I, 1 + as.Date(DateTimeTo) - as.Date(DateTimeFrom))]
   ][, `:=` (DateTimeFrom = pmax(DateTimeFrom[1], as.POSIXct(paste0(as.Date(DateTimeFrom[1]) + 0:(.N-1), ' 00:00:00'))),
             DateTimeTo = pmin(DateTimeTo[.N], as.POSIXct(paste0(as.Date(DateTimeTo[.N]) - (.N-1):0, ' 23:59:59'))))
     , by = .(TimeStampID, rleid(DateTimeFrom))][]

我已经向您的DT添加了另一个组,只是为了测试功能:

RawDT = data.table(
  TimeStampID = c("4", "5"),
  DateTimeFrom = c("2019-02-10 16:28:03", "2019-03-15 12:28:03"),
  DateTimeTo = c("2019-02-12 02:04:03", "2019-03-20 14:45:00")
)

上述代码的输出为:

   TimeStampID        DateTimeFrom          DateTimeTo
1:           4 2019-02-10 16:28:03 2019-02-10 23:59:59
2:           4 2019-02-11 00:00:00 2019-02-11 23:59:59
3:           4 2019-02-12 00:00:00 2019-02-12 02:04:03
4:           5 2019-03-15 12:28:03 2019-03-15 23:59:59
5:           5 2019-03-16 00:00:00 2019-03-16 23:59:59
6:           5 2019-03-17 00:00:00 2019-03-17 23:59:59
7:           5 2019-03-18 00:00:00 2019-03-18 23:59:59
8:           5 2019-03-19 00:00:00 2019-03-19 23:59:59
9:           5 2019-03-20 00:00:00 2019-03-20 14:45:00