假设我们有数据输入:
<div class="tab-wrap">
<div class="parrent pull-left">
<ul class="nav nav-tabs nav-stacked">
<li class="active"><a href="#tab1" data-toggle="tab" class="analistic-01">Tab 1</a></li>
<li class=""><a href="#tab2" data-toggle="tab" class="analistic-02">Tab 2</a></li>
<li class=""><a href="#tab3" data-toggle="tab" class="analistic-03">Tab 3</a></li>
</ul>
</div>
<div class="tab-content">
<div class="tab-pane active in" id="tab1">
<p> hello 1</p>
</div>
<div class="tab-pane" id="tab2">
<p> hello 2</p>
</div>
<div class="tab-pane" id="tab3">
<p>Hello 3</p>
</div>
</div> <!--/.tab-content-->
</div><!--/.tab-wrap-->
目标是计算所有事件的日期发生次数(包括开始,排除结束)。填写此数据框:
buildTypes {
release {
proguardFiles getDefaultProguardFile('proguard-android.txt'),
'proguard-rules.pro'
}
debug {
proguardFiles getDefaultProguardFile('proguard-android.txt'),
'proguard-rules.pro'
}
}
从概念上讲,它看起来像这样:
df.in <- data.frame(event = c(1,2,3,4,5),
start = c("2015-01-01", "2015-01-01", "2015-01-02",
"2015-01-02", "2015-01-03"),
end = c("2015-01-03", "2015-01-04", "2015-01-03",
"2015-01-05", "2015-01-05"))
df.in$start <- as.Date(df.in$start, "%Y-%m-%d")
df.in$end <- as.Date(df.in$end, "%Y-%m-%d")
> df.in
event start end
1 1 2015-01-01 2015-01-03
2 2 2015-01-01 2015-01-04
3 3 2015-01-02 2015-01-03
4 4 2015-01-02 2015-01-05
5 5 2015-01-03 2015-01-05
所以,我目前的想法是循环:
df.out <- data.frame(date = c("2015-01-01", "2015-01-02", "2015-01-03",
"2015-01-04", "2015-01-05"),
count = 0)
df.out$date <- as.Date(df.out$date, "%Y-%m-%d")
> df.out
date count
1 2015-01-01 0
2 2015-01-02 0
3 2015-01-03 0
4 2015-01-04 0
5 2015-01-05 0
它有效,但我有点害怕我所援引的这个#1 **
#2 ****
#3 ***
#4 **
#5
可能会滚雪球变成非常大的东西。鉴于事件数量很容易达到数十甚至数十万。
所以我的问题是 - 能有更有效的方法吗?也许通过使用一些日期包,如for(i in seq_along(df.out$date)){
temp.df <- df.in[df.in$start <= df.out$date[i],]
df.out$count[i] <- nrow(temp.df) - nrow(temp.df[temp.df$end <= df.out$date[i],])
}
> df.out
date count
1 2015-01-01 2
2 2015-01-02 4
3 2015-01-03 3
4 2015-01-04 2
5 2015-01-05 0
,我可以在某种程度上矢量化整个事情?
答案 0 :(得分:2)
所以我已经完成了对data.table::foverlaps()
的研究。我会把我的发现留给任何可能发现它有用的人,因为我在搜索类似帖子时并没有真正找到这些小东西。
鉴于我们正在比较区间,并且我们只在y
参数上有间隔,在这种特殊情况下是df.in
- 我们必须人为地制作一个区间。例如在df.out$date2 <- df.out$date
中。此外,没有简单的(或我无法找到任何)方式来设置包含或排除设置间隔端点。鉴于我们要在df.in$end
中排除端点,我们必须使用简单的df.in$end <- df.in$end - 1
在数据表本身上手动执行此操作。
长话短说,这是一个有效的例子:
require(data.table)
df.out <- data.table(date = c("2015-01-01", "2015-01-02", "2015-01-03",
"2015-01-04", "2015-01-05"),
count = 0)
df.out$date <- as.Date(df.out$date, "%Y-%m-%d")
df.in <- data.table(event = c(1,2,3,4,5),
start = c("2015-01-01", "2015-01-01", "2015-01-02",
"2015-01-02", "2015-01-03"),
end = c("2015-01-03", "2015-01-04", "2015-01-03",
"2015-01-05", "2015-01-05"))
df.in$start <- as.Date(df.in$start, "%Y-%m-%d")
df.in$end <- as.Date(df.in$end, "%Y-%m-%d") - 1
setkey(df.in, start, end)
df.out$date2 <- df.out$date
df.test <- foverlaps(x = df.out, y = df.in, type = "within", by.x = c("date", "date2"), by.y = c("start", "end"))
df.test$count[!is.na(df.test$event)] <- 1
aggregate(count ~ date, data = df.test, sum)
date count
1 2015-01-01 2
2 2015-01-02 4
3 2015-01-03 3
4 2015-01-04 2
5 2015-01-05 0
或者,您可以
数据
df.out <- data.table(date = as.Date(c("2015-01-01", "2015-01-02", "2015-01-03",
"2015-01-04", "2015-01-05")))
df.in <- data.table(event = 1:5,
start = as.Date(c("2015-01-01", "2015-01-01", "2015-01-02",
"2015-01-02", "2015-01-03")),
end = as.Date(c("2015-01-03", "2015-01-04", "2015-01-03",
"2015-01-05", "2015-01-05")))
解决方案
df.out[, `:=`(start = date, end = date)]
df.in[, end := end - 1L]
setkey(df.out, start, end)
foverlaps(df.in, df.out)[, .(count = .N), by = date]
# date count
# 1: 2015-01-01 2
# 2: 2015-01-02 4
# 3: 2015-01-03 3
# 4: 2015-01-04 2
或,如果您想更新df.out
,您也可以
res <- foverlaps(df.in, df.out, which = TRUE)[, .N, by = yid]
df.out[res$yid, Count := res$N]
df.out[is.na(Count), Count := 0L]