我想找到机器人可以从特定空间中拾取某些物体的最佳路径,我要求用户输入他想拾取的物体的名称,当他键入2时,问题已经解决,但是当他输入更多,例如,当他输入3时,我的程序为他提供了两个之间的最短路径,然后将该路径添加到列表中,机器人选择了具有相同顺序的对象,这不是我想要的,我想要找到最短的方法来挑选所有的人
from collections import deque, namedtuple
# we'll use infinity as a default distance to nodes.
inf = float('inf')
Edge = namedtuple('Edge', 'start, end, cost')
def make_edge(start, end, cost=1):
return Edge(start, end, cost)
class Graph:
def __init__(self, edges):
# let's check that the data is right
wrong_edges = [i for i in edges if len(i) not in [2, 3]]
if wrong_edges:
raise ValueError('Wrong edges data: {}'.format(wrong_edges))
self.edges = [make_edge(*edge) for edge in edges]
@property
def vertices(self):
return set(
sum(
([edge.start, edge.end] for edge in self.edges), []
)
)
def get_node_pairs(self, n1, n2, both_ends=True):
if both_ends:
node_pairs = [[n1, n2], [n2, n1]]
else:
node_pairs = [[n1, n2]]
return node_pairs
def remove_edge(self, n1, n2, both_ends=True):
node_pairs = self.get_node_pairs(n1, n2, both_ends)
edges = self.edges[:]
for edge in edges:
if [edge.start, edge.end] in node_pairs:
self.edges.remove(edge)
def add_edge(self, n1, n2, cost=1, both_ends=True):
node_pairs = self.get_node_pairs(n1, n2, both_ends)
for edge in self.edges:
if [edge.start, edge.end] in node_pairs:
return ValueError('Edge {} {} already exists'.format(n1, n2))
self.edges.append(Edge(start=n1, end=n2, cost=cost))
if both_ends:
self.edges.append(Edge(start=n2, end=n1, cost=cost))
@property
def neighbours(self):
neighbours = {vertex: set() for vertex in self.vertices}
for edge in self.edges:
neighbours[edge.start].add((edge.end, edge.cost))
return neighbours
def dijkstra(self, source, dest):
assert source in self.vertices, 'Such source node doesn\'t exist'
distances = {vertex: inf for vertex in self.vertices}
previous_vertices = {
vertex: None for vertex in self.vertices
}
distances[source] = 0
vertices = self.vertices.copy()
while vertices:
current_vertex = min(
vertices, key=lambda vertex: distances[vertex])
vertices.remove(current_vertex)
if distances[current_vertex] == inf:
break
for neighbour, cost in self.neighbours[current_vertex]:
alternative_route = distances[current_vertex] + cost
if alternative_route < distances[neighbour]:
distances[neighbour] = alternative_route
previous_vertices[neighbour] = current_vertex
path, current_vertex = deque(), dest
while previous_vertices[current_vertex] is not None:
path.appendleft(current_vertex)
current_vertex = previous_vertices[current_vertex]
if path:
path.appendleft(current_vertex)
return path
thing = [
["a0", "b0", 2], ["a0", "a1", 1],
["a1", "a2", 1], ["a2", "a3", 1],
["a3", "a4", 1], ["a4", "b4", 2],
["b0", "c0", 2], ["b0", "b1", 1],
["b1", "b2", 1], ["b2", "b3", 1],
["b3", "b4", 1], ["b4", "c4", 2],
["c0", "c1", 1], ["c1", "c2", 1],
["c2", "c3", 1], ["c3", "c4", 1],
["a4", "b4", 2], ["a4", "a5", 1],
["a5", "a6", 1], ["a6", "a7", 1],
["a7", "a8", 1], ["a8", "b8", 2],
["b4", "c4", 2], ["b4", "b5", 1],
["b5", "b6", 1], ["b6", "b7", 1],
["b7", "b8", 1], ["b8", "c8", 2],
["c4", "c5", 1], ["c5", "c6", 1],
["c6", "c7", 1], ["c7", "c8", 1]
]
other=[]
for i in thing:
a=[]
a.append(i[1])
a.append(i[0])
a.append(i[2])
other.append(a)
result = thing + other
graph = Graph(result)
NumberOfThings = int(input('how many things would you like to pick ? '))
ThingsToPick=[]
for i in range(0, NumberOfThings):
name=input(' - ')
ThingsToPick.append(name)
len=len(ThingsToPick)
way=[]
for i in range(0,len-1):
for j in list(graph.dijkstra(ThingsToPick[i], ThingsToPick[i+1])):
way.append(j)
print(way)
答案 0 :(得分:0)
我不熟悉python中的顶点和边缘。下面的代码在顶点之间具有一个函数distance [[a,b]),您需要将其替换为真实距离函数。
import itertools
def distance(alist)
pairs=[[l[i],l[i+1]] for i in range(0,len(l)-2)]
d=0
for pair in pairs:
d += distancebetweenvertices(pair)
return d
l=['a','b','c','d']
ways=itertools.combinations(l)
bestdistance=distance(l)
bestway=l
for way in ways:
if distance(way) < bestdistance:
bestway=way
首先,我们为列表中顶点之间的总距离定义一个函数。距离函数将列表分成几对,使用顶点函数之间的(占位符)distance计算两个之间的距离并将其求和。
然后,它通过itertools创建所有可能方式的列表,将bestway和bestdistance的起始值设置为用户给出的输入顺序和相应的距离。现在,它会检查所有可能的方式,以检查总距离是否较小。如果是,则用这种方式和距离替换bestway和bestdistance。最后,您将在bestway和bestdistance变量中拥有最佳方式和距离。
希望有帮助。