具有matmul和for循环的基本深度神经网络,是否可以循环通过?

时间:2019-02-08 21:55:34

标签: tensorflow

我正在尝试使用tensorflow编写的深度神经网络的for循环。我已经尝试过手动将每一层相乘。工作正常。但是为了使其具有吸引力,我试图在OOP中使其成为Keras风格。但是出现形状错误。谁能解释这里出了什么问题?

对我来说,我是新来的。因此,如果我在代码中做了任何愚蠢的事情,请原谅我。

class Sequential_Model:


def __init__(self):
    self.__current_layer = -1
    self.__weights = list()
    self.__biases = list()
    self.__dropout = list()
    self.__l1_regularizer = list()
    self.__l2_regularizer = list()
    self.__activation = list()

def Add_Dense_layer(self, input_shape, output_shape, activation_function = 'leaky_relu', dropout_rate = 0.0):

    self.__current_layer = self.__current_layer + 1

    self.__weights.append(tf.Variable(tf.random.truncated_normal([input_shape, output_shape], 0.1)))
    self.__biases.append(tf.Variable(tf.ones([output_shape])))

    self.__activation.append((self.__current_layer, activation_function))
    self.__dropout.append((self.__current_layer , dropout_rate))


def Add_L1_Regularize():
    pass

def Add_L2_Regularize():
    pass

def __rmse(self, predictions , label):
    return tf.losses.mean_squared_error(predictions, label)

def __train(self, train_data, train_label, validation_data, validation_label, epochs, batch_size):
    print(train_data.shape)
    print(train_label.shape)

    x_train = tf.placeholder(tf.float32)
    y_train = tf.placeholder(tf.float32)

    x_valid = tf.placeholder(tf.float32)
    y_valid = tf.placeholder(tf.float32)

    output = tf.add(tf.matmul(x_train, self.__weights[0]) , self.__biases[0])


    if self.__activation[0][1] == 'relu':
        output = tf.nn.relu(output)
    elif self.__activation[0][1] == 'leaky_relu':
        output = tf.nn.relu(output)

    if self.__dropout[0][1] != 0.0 :
        output = tf.layers.dropout(output, self.__dropout[0][1])


    for i in range(1, self.__current_layer + 1):
        output = tf.add(tf.matmul(output, self.__weights[i]) , self.__biases[i])

        if self.__activation[i][1] == 'relu':
            output = tf.nn.relu(output)
        elif self.__activation[i][1] == 'leaky_relu':
            output = tf.nn.leaky_relu(output)

        if self.__dropout[i][1] != 0.0 :
            output = tf.layers.dropout(output, self.__dropout[i][1])


    #if self.__loss == 'rmse':
        #loss = self.__rmse(output , y_train)
    loss = tf.losses.mean_squared_error(output, y_train)

    #if self.__optimizer == 'adam':
    optimizer = tf.train.AdamOptimizer(learning_rate=self.__learning_rate).minimize(loss)


    init = tf.global_variables_initializer()



    with tf.Session() as sess:
    # create initialized variables
        sess.run(init)
        for epoch in range(epochs+1):
            avg_cost = 0.0
            total_num_batch = train_data.shape[0]//batch_size

            for index, offset in enumerate(range(0, train_data.shape[0], batch_size)):
                xs, ys = train_data[offset: offset + batch_size], train_label[offset: offset + batch_size]
                #print(xs.shape)
                _, cost = sess.run([optimizer, loss], feed_dict = {x_train: xs, y_train: np.reshape( ys, (-1, 1))})

            avg_cost += (cost / total_num_batch)

            if epoch % 20 == 0:
                print("Epoch:", (epoch), "cost =", "{:.5f}".format(avg_cost))





def fit(self,train_data, train_label, epochs = 100, batch_size = 24, validation_data = (None, None), validation_size = 0.1):

    if validation_data[0] == None or validation_data[1] == None:
        train_data, validation_data, train_lable, validation_label = train_test_split(train_data, train_label, 
                                                                                      test_size = validation_size)


    self.__train(train_data, train_label, validation_data, validation_label, epochs, batch_size)



def compile(self, loss='rmse', optimizer='adam', learning_rate = 0.01):
    self.__loss = loss
    self.__optimizer = optimizer
    self.__learning_rate = learning_rate       

model = Sequential_Model()
model.Add_Dense_layer(input_shape=74 , output_shape=74, activation_function='leaky_relu', dropout_rate=0.2)
model.Add_Dense_layer(input_shape=74 , output_shape=37, activation_function='leaky_relu', dropout_rate=0.2)
model.Add_Dense_layer(input_shape=37, output_shape=15, activation_function='leaky_relu', dropout_rate=0.2)
model.Add_Dense_layer(input_shape=15, output_shape=7, activation_function='leaky_relu', dropout_rate=0.1)
model.Add_Dense_layer(input_shape=7, output_shape=1, activation_function='leaky_relu', dropout_rate=0.1)


model.compile(learning_rate=0.001)

model.fit(train_data=X_train, train_label=Y_train)






---------------------------------------------------------------------------
InvalidArgumentError                      Traceback (most recent call last)
D:\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in _do_call(self, fn, *args)
   1333     try:
-> 1334       return fn(*args)
   1335     except errors.OpError as e:

D:\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in _run_fn(feed_dict, fetch_list, target_list, options, run_metadata)
   1318       return self._call_tf_sessionrun(
-> 1319           options, feed_dict, fetch_list, target_list, run_metadata)
   1320 

D:\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in _call_tf_sessionrun(self, options, feed_dict, fetch_list, target_list, run_metadata)
   1406         self._session, options, feed_dict, fetch_list, target_list,
-> 1407         run_metadata)
   1408 

InvalidArgumentError: Incompatible shapes: [24,1] vs. [19,1]
     [[{{node mean_squared_error_9/SquaredDifference}} = SquaredDifference[T=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:GPU:0"](_arg_Placeholder_43_0_1/_1, LeakyRelu_27)]]
     [[{{node mean_squared_error_9/num_present/broadcast_weights/assert_broadcastable/AssertGuard/Assert/Switch_2/_15}} = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_121_m...t/Switch_2", tensor_type=DT_INT32, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]

During handling of the above exception, another exception occurred:

InvalidArgumentError                      Traceback (most recent call last)
<ipython-input-63-3932e4f6c131> in <module>()
----> 1 model.fit(train_data=X_train, train_label=Y_train)

<ipython-input-60-b65b270e68fd> in fit(self, train_data, train_label, epochs, batch_size, validation_data, validation_size)
    105 
    106 
--> 107         self.__train(train_data, train_label, validation_data, validation_label, epochs, batch_size)
    108 
    109 

<ipython-input-60-b65b270e68fd> in __train(self, train_data, train_label, validation_data, validation_label, epochs, batch_size)
     87                     xs, ys = train_data[offset: offset + batch_size], train_label[offset: offset + batch_size]
     88                     #print(xs.shape)
---> 89                     _, cost = sess.run([optimizer, loss], feed_dict = {x_train: xs, y_train: np.reshape( ys, (-1, 1))})
     90 
     91                 avg_cost += (cost / total_num_batch)

D:\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in run(self, fetches, feed_dict, options, run_metadata)
    927     try:
    928       result = self._run(None, fetches, feed_dict, options_ptr,
--> 929                          run_metadata_ptr)
    930       if run_metadata:
    931         proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)

D:\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)
   1150     if final_fetches or final_targets or (handle and feed_dict_tensor):
   1151       results = self._do_run(handle, final_targets, final_fetches,
-> 1152                              feed_dict_tensor, options, run_metadata)
   1153     else:
   1154       results = []

D:\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)
   1326     if handle is None:
   1327       return self._do_call(_run_fn, feeds, fetches, targets, options,
-> 1328                            run_metadata)
   1329     else:
   1330       return self._do_call(_prun_fn, handle, feeds, fetches)

D:\Anaconda3\lib\site-packages\tensorflow\python\client\session.py in _do_call(self, fn, *args)
   1346           pass
   1347       message = error_interpolation.interpolate(message, self._graph)
-> 1348       raise type(e)(node_def, op, message)
   1349 
   1350   def _extend_graph(self):

InvalidArgumentError: Incompatible shapes: [24,1] vs. [19,1]
     [[node mean_squared_error_9/SquaredDifference (defined at <ipython-input-60-b65b270e68fd>:69)  = SquaredDifference[T=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:GPU:0"](_arg_Placeholder_43_0_1/_1, LeakyRelu_27)]]
     [[{{node mean_squared_error_9/num_present/broadcast_weights/assert_broadcastable/AssertGuard/Assert/Switch_2/_15}} = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_121_m...t/Switch_2", tensor_type=DT_INT32, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]

Caused by op 'mean_squared_error_9/SquaredDifference', defined at:
  File "D:\Anaconda3\lib\runpy.py", line 193, in _run_module_as_main
    "__main__", mod_spec)
  File "D:\Anaconda3\lib\runpy.py", line 85, in _run_code
    exec(code, run_globals)
  File "D:\Anaconda3\lib\site-packages\ipykernel_launcher.py", line 16, in <module>
    app.launch_new_instance()
  File "D:\Anaconda3\lib\site-packages\traitlets\config\application.py", line 658, in launch_instance
    app.start()
  File "D:\Anaconda3\lib\site-packages\ipykernel\kernelapp.py", line 477, in start
    ioloop.IOLoop.instance().start()
  File "D:\Anaconda3\lib\site-packages\zmq\eventloop\ioloop.py", line 177, in start
    super(ZMQIOLoop, self).start()
  File "D:\Anaconda3\lib\site-packages\tornado\ioloop.py", line 888, in start
    handler_func(fd_obj, events)
  File "D:\Anaconda3\lib\site-packages\tornado\stack_context.py", line 277, in null_wrapper
    return fn(*args, **kwargs)
  File "D:\Anaconda3\lib\site-packages\zmq\eventloop\zmqstream.py", line 440, in _handle_events
    self._handle_recv()
  File "D:\Anaconda3\lib\site-packages\zmq\eventloop\zmqstream.py", line 472, in _handle_recv
    self._run_callback(callback, msg)
  File "D:\Anaconda3\lib\site-packages\zmq\eventloop\zmqstream.py", line 414, in _run_callback
    callback(*args, **kwargs)
  File "D:\Anaconda3\lib\site-packages\tornado\stack_context.py", line 277, in null_wrapper
    return fn(*args, **kwargs)
  File "D:\Anaconda3\lib\site-packages\ipykernel\kernelbase.py", line 283, in dispatcher
    return self.dispatch_shell(stream, msg)
  File "D:\Anaconda3\lib\site-packages\ipykernel\kernelbase.py", line 235, in dispatch_shell
    handler(stream, idents, msg)
  File "D:\Anaconda3\lib\site-packages\ipykernel\kernelbase.py", line 399, in execute_request
    user_expressions, allow_stdin)
  File "D:\Anaconda3\lib\site-packages\ipykernel\ipkernel.py", line 196, in do_execute
    res = shell.run_cell(code, store_history=store_history, silent=silent)
  File "D:\Anaconda3\lib\site-packages\ipykernel\zmqshell.py", line 533, in run_cell
    return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
  File "D:\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 2698, in run_cell
    interactivity=interactivity, compiler=compiler, result=result)
  File "D:\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 2808, in run_ast_nodes
    if self.run_code(code, result):
  File "D:\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 2862, in run_code
    exec(code_obj, self.user_global_ns, self.user_ns)
  File "<ipython-input-63-3932e4f6c131>", line 1, in <module>
    model.fit(train_data=X_train, train_label=Y_train)
  File "<ipython-input-60-b65b270e68fd>", line 107, in fit
    self.__train(train_data, train_label, validation_data, validation_label, epochs, batch_size)
  File "<ipython-input-60-b65b270e68fd>", line 69, in __train
    loss = tf.losses.mean_squared_error(output, y_train)
  File "D:\Anaconda3\lib\site-packages\tensorflow\python\ops\losses\losses_impl.py", line 671, in mean_squared_error
    losses = math_ops.squared_difference(predictions, labels)
  File "D:\Anaconda3\lib\site-packages\tensorflow\python\ops\gen_math_ops.py", line 8258, in squared_difference
    "SquaredDifference", x=x, y=y, name=name)
  File "D:\Anaconda3\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 787, in _apply_op_helper
    op_def=op_def)
  File "D:\Anaconda3\lib\site-packages\tensorflow\python\util\deprecation.py", line 488, in new_func
    return func(*args, **kwargs)
  File "D:\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 3274, in create_op
    op_def=op_def)
  File "D:\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 1770, in __init__
    self._traceback = tf_stack.extract_stack()

InvalidArgumentError (see above for traceback): Incompatible shapes: [24,1] vs. [19,1]
     [[node mean_squared_error_9/SquaredDifference (defined at <ipython-input-60-b65b270e68fd>:69)  = SquaredDifference[T=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:GPU:0"](_arg_Placeholder_43_0_1/_1, LeakyRelu_27)]]
     [[{{node mean_squared_error_9/num_present/broadcast_weights/assert_broadcastable/AssertGuard/Assert/Switch_2/_15}} = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/device:CPU:0", send_device="/job:localhost/replica:0/task:0/device:GPU:0", send_device_incarnation=1, tensor_name="edge_121_m...t/Switch_2", tensor_type=DT_INT32, _device="/job:localhost/replica:0/task:0/device:CPU:0"]()]]

0 个答案:

没有答案