我有一个现有的数据框,看起来像:
id start_date end_date
0 1 20170601 20210531
1 2 20181001 20220930
2 3 20150101 20190228
3 4 20171101 20211031
我正在尝试向此数据框添加85列:
我尝试了以下方法:
start, end = [datetime.strptime(_, "%Y%m%d") for _ in ['20120101', '20190201']]
global_list = list(OrderedDict(((start + timedelta(_)).strftime(r"%m/%y"), None) for _ in range((end - start).days)).keys())
def get_count(contract_start_date, contract_end_date):
start, end = [datetime.strptime(_, "%Y%m%d") for _ in [contract_start_date, contract_end_date]]
current_list = list(OrderedDict(((start + timedelta(_)).strftime(r"%m/%y"), None) for _ in range((end - start).days)).keys())
temp_list = []
for each in global_list:
if each in current_list:
temp_list.append(1)
else:
temp_list.append(0)
return pd.Series(temp_list)
sample_df[global_list] = sample_df[['contract_start_date', 'contract_end_date']].apply(lambda x: get_count(*x), axis=1)
和示例df看起来像:
customer_id contract_start_date contract_end_date 01/12 02/12 03/12 04/12 05/12 06/12 07/12 ... 04/18 05/18 06/18 07/18 08/18 09/18 10/18 11/18 12/18 01/19
1 1 20181001 20220930 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 1 1 1 1
9 2 20160701 20200731 0 0 0 0 0 0 0 ... 1 1 1 1 1 1 1 1 1 1
3 3 20171101 20211031 0 0 0 0 0 0 0 ... 1 1 1 1 1 1 1 1 1 1
3 rows × 88 columns
对于小型数据集,它工作正常,但对于16万行,即使3小时后它也没有停止。有人可以告诉我一种更好的方法吗?
答案 0 :(得分:2)
首先,我将截止日期截止,以规范end_time(以确保它在时间范围内):
In [11]: df.end_date = df.end_date.where(df.end_date < '2019-02-01', pd.Timestamp('2019-01-31')) + pd.offsets.MonthBegin()
In [12]: df
Out[12]:
id start_date end_date
0 1 2017-06-01 2019-02-01
1 2 2018-10-01 2019-02-01
2 3 2015-01-01 2019-02-01
3 4 2017-11-01 2019-02-01
注意:如果日期在2012年之前,您将需要对start_date
做同样的技巧。
我会从各列的日期范围中创建结果DataFrame,然后将其填充(在开始时加上一个,以及其他内容:
In [13]: m = pd.date_range('2012-01-01', '2019-02-01', freq='MS')
In [14]: res = pd.DataFrame(0., columns=m, index=df.index)
In [15]: res.update(pd.DataFrame(np.diag(np.ones(len(df))), df.index, df.start_date).groupby(axis=1, level=0).sum())
In [16]: res.update(-pd.DataFrame(np.diag(np.ones(len(df))), df.index, df.end_date).groupby(axis=1, level=0).sum())
如果同一行中有多行开始或结束,则必须使用groupby sum。
# -1 and NaN were really placeholders for zero
In [17]: res = res.replace(0, np.nan).ffill(axis=1).replace([np.nan, -1], 0)
In [18]: res
Out[18]:
2012-01-01 2012-02-01 2012-03-01 2012-04-01 2012-05-01 ... 2018-09-01 2018-10-01 2018-11-01 2018-12-01 2019-01-01
0 0.0 0.0 0.0 0.0 0.0 ... 1.0 1.0 1.0 1.0 1.0
1 0.0 0.0 0.0 0.0 0.0 ... 0.0 1.0 1.0 1.0 1.0
2 0.0 0.0 0.0 0.0 0.0 ... 1.0 1.0 1.0 1.0 1.0
3 0.0 0.0 0.0 0.0 0.0 ... 1.0 1.0 1.0 1.0 1.0