我想知道是否有办法计算一天中不同时间段内我已经使用深度特征综合(即计数,总和,均值等)的所有相同变量?
即早上事件(0-12小时)的计数与晚上事件(13-24)的变量分开。
同样,按照周几,月几日,年月日等方式获取计数最容易。自定义聚合基元?
答案 0 :(得分:2)
是的,这是可能的。首先,让我们生成一些随机数据,然后我将逐步介绍如何操作
import featuretools as ft
import pandas as pd
import numpy as np
# make some random data
n = 100
events_df = pd.DataFrame({
"id" : range(n),
"customer_id": np.random.choice(["a", "b", "c"], n),
"timestamp": pd.date_range("Jan 1, 2019", freq="1h", periods=n),
"amount": np.random.rand(n) * 100
})
def to_part_of_day(x):
if x < 12:
return "morning"
elif x < 18:
return "afternoon"
else:
return "evening"
events_df["time_of_day"] = events_df["timestamp"].dt.hour.apply(to_part_of_day)
events_df
我们要做的第一件事是为要计算其特征的线段添加新列
def to_part_of_day(x):
if x < 12:
return "morning"
elif x < 18:
return "afternoon"
else:
return "evening"
events_df["time_of_day"] = events_df["timestamp"].dt.hour.apply(to_part_of_day)
现在我们有一个这样的数据框
id customer_id timestamp amount time_of_day
0 0 a 2019-01-01 00:00:00 44.713802 morning
1 1 c 2019-01-01 01:00:00 58.776476 morning
2 2 a 2019-01-01 02:00:00 94.671566 morning
3 3 a 2019-01-01 03:00:00 39.271852 morning
4 4 a 2019-01-01 04:00:00 40.773290 morning
5 5 c 2019-01-01 05:00:00 19.815855 morning
6 6 a 2019-01-01 06:00:00 62.457129 morning
7 7 b 2019-01-01 07:00:00 95.114636 morning
8 8 b 2019-01-01 08:00:00 37.824668 morning
9 9 a 2019-01-01 09:00:00 46.502904 morning
接下来,让我们将其加载到我们的实体集中
es = ft.EntitySet()
es.entity_from_dataframe(entity_id="events",
time_index="timestamp",
dataframe=events_df)
es.normalize_entity(new_entity_id="customers", index="customer_id", base_entity_id="events")
es.plot()
现在,我们准备使用interesting_values
es["events"]["time_of_day"].interesting_values = ["morning", "afternoon", "evening"]
然后,我们可以运行DFS并在where_primitives
参数中逐段放置我们想要的聚合原语
fm, fl = ft.dfs(target_entity="customers",
entityset=es,
agg_primitives=["count", "mean", "sum"],
trans_primitives=[],
where_primitives=["count", "mean", "sum"])
fm
在生成的特征矩阵中,您现在可以看到我们每天早上,下午和晚上都有聚合
COUNT(events) MEAN(events.amount) SUM(events.amount) COUNT(events WHERE time_of_day = afternoon) COUNT(events WHERE time_of_day = evening) COUNT(events WHERE time_of_day = morning) MEAN(events.amount WHERE time_of_day = afternoon) MEAN(events.amount WHERE time_of_day = evening) MEAN(events.amount WHERE time_of_day = morning) SUM(events.amount WHERE time_of_day = afternoon) SUM(events.amount WHERE time_of_day = evening) SUM(events.amount WHERE time_of_day = morning)
customer_id
a 37 49.753630 1840.884300 12 7 18 35.098923 45.861881 61.036892 421.187073 321.033164 1098.664063
b 30 51.241484 1537.244522 3 10 17 45.140800 46.170996 55.300715 135.422399 461.709963 940.112160
c 33 39.563222 1305.586314 9 7 17 50.129136 34.593936 36.015679 451.162220 242.157549 612.266545